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ABSTRACT
To support the culture of opportunistic programming—
hacking, rapid iteration, and reuse of found code via copy-
and-paste—researchers are increasingly exploring options of
integrating online resources into the development workflow.
Such explorations rely heavily on an understanding of how pro-
grammers search the Web. Most research, however, has been
based on aggregate log analyses or laboratory experiments
which fail to capture real-world context. In this study, we
tracked the online searches of 18 programmers in a two-week
instrumented panel while they were engaged in their normal
day-to-day work activities. Based on first-hand commentary
which participants added to a subset of their searches using
a browser extension, we present seven classes of program-
ming search goals and discuss specific search strategies. As a
methodological contribution, we describe and evaluate the use
of an instrumented panel coupled with experience sampling
(IP-ES). Our results contribute to a theory of online resource
usage in programming, and include guidelines for collecting
annotated query logs in practice.
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1. INTRODUCTION
In the past decades, a set of alternative practices in software
engineering has been widely described in the literature, col-
lectively known as opportunistic programming. An approach
that facilitates rapid prototyping, experimentation, and discov-
ery [7], it has been viewed mostly in the context of end-user
software engineering—programming by non-professionals
[7, 10, 19, 23]—and contrasted with the more traditional sys-
tematic programming [43]. Recently, however, with start-ups
and established companies alike beginning to embrace agile
practices [2,26], and the ranks of non-professional hackers and
tinkerers growing [23], we can say that opportunistic practices
are no longer as much about untrained end-users as they are
about programming in the age of the Internet [19].

Among the five characteristics of opportunistic programming—
rapid iteration, impermanent code, unique debugging chal-
lenges, building from scratch, and copy-and-pasting found
code [7]—two in particular are largely facilitated by Web
search engines. Building from scratch using high-level tools
rather than modifying existing systems requires the ability
to find tutorials and other learning resources, and copy-and-
pasting found code requires the ability to find snippets relevant
to specific APIs and assess their suitability. With a range of
resources enjoying wide availability on the Web, online search
is so pervasive in the workflows of today’s programmers that
it is not uncommon for developers to occasionally doubt their
programming ability, believing instead that their talent lies in
skilled querying. Brandt et al. [6] (who’s work also serves
as the main inspiration for this study) aptly note that nowa-
days programming is becoming less about knowing how to do
something and more about asking the right questions.

Understanding how these questions are asked online can sup-
port programmers’ search practices through better designed
tools, both in the browser and in the IDE (Integrated Devel-
opment Environment) [6, 28]. Though a range of search en-
gines and IDE extensions have been described in the literature
(e.g., [5, 18, 20, 43]), industry adoption has been limited. One
area to consider when overcoming these adoption barriers is
research methodology.

Though field studies in HCI are today applied in a range of
areas, the empirical study of programmers (ESP) is one of
the longest-standing research concentrations within HCI [23].
Nonetheless, a lack of tool adoption by professional developers
is a concern recognised by the ESP community, and one reason
put forth is that the majority of studies is conducted in the
lab, and tool design is not rooted in what software engineers
actually do in their daily practice [14,28,34,38,41,45]. Indeed,
a large portion of research on how programmers search the
Web is based on observations of artificial tasks or analyses of
aggregate search query logs that provide little context.

One approach to keep research grounded in real practice is to
apply in situ methodologies, many of which can be appropri-
ated to the field of software engineering; for comprehensive
reviews and comparisons, see, for example, [13,29,38]. Using
a balanced mix of methods and appropriate application, field
studies can reveal not only the hows and the whats of a given
behaviour, but also the whys. In the case of programmer search

behaviour it is precisely the whys that house an abundance of
implications for tool design. So, despite a significant body
of research that has already contributed to theories of how
programmers consume online resources, an opportunity exists
to improve our understanding of these practices in the wild.

Motivated by expanding upon the findings of past research,
and by developing a longitudinal in situ method appropriate
to the field of software engineering, the aim of this study is
to explore programmers’ online search practices during their
day-to-day tasks. An in situ method will allow us to focus
on programmers who are familiar with their codebase and
undertake a variety of programming tasks—something that is
difficult to simulate in a lab. Our research questions can thus
be put simply:

1. What do professional programmers working on familiar
projects search for on the Web?

2. What search strategies do they use in this process?

In this report, we present the results of a longitudinal
study where 18 programmers anonymously shared their Web
searches for two weeks. To capture contextual factors, par-
ticipants also provided first-hand commentary for a subset of
their searches. Discussed in Chapter 4, our findings contribute
empirical evidence to the general theory of online resource
consumption among programmers.

As an additional contribution, Chapter 3 presents the design
and implementation details of our data collection apparatus: a
browser extension that tracks participants’ Web searches and
prompts them for timely commentary. With the methodologi-
cal review given in Chapter 5, we hope to motivate increased
use of similar in situ approaches in future empirical software
engineering studies.

We begin, however, with a review of related work into pro-
grammers’ information needs and methods of investigating
online search behaviour.

2. RELATED WORK
This research builds on two bodies of related work: (1) how
software engineers use the Web, and (2) how online search
behaviour is investigated.

2.1 Web Use among Software Engineers
2.1.1 Information needs

To begin from a high level, the learning barriers described by
Ko et al. [25] provide a blanket framework for categorising
programmers’ information needs. A total of six barriers are
identified—design, selection, coordination, use, understand-
ing, and information—each addressing a different level of
difficulty faced by programmers (see Figure 2.1 for details).
Of the six, questions that arise at the barriers of understanding
and information have posed long-standing research interests
as they concern program comprehension, the fundamental cog-
nitive activity software engineers engage in. Sillito et al. [39],
for example, identified four question areas that represent barri-
ers to understanding: finding initial focus points (e.g., Where
is the text in this error message defined?), building on those
points (e.g., What data is being modified in this method?),
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understanding program subgraphs (e.g., How is this UI error
implemented?), and understanding groups of subgraphs (e.g.,
What will be the total impact of this change?). On a more gran-
ular level, LaToza and Myers [27] listed 94 distinct questions,
primarily also addressing understanding and information bar-
riers; they include, among others, What is the intent of this
code? Is it possible to refactor this? How did this ever work?

When we consider the context of a team and a project, ques-
tions external to the codebase also become relevant. Fritz and
Murphy [15] identified 78 such questions, including Why did
this code change? What has changed between two builds?
Has progress been made on blockers? Who broke the build?
Though mapping questions of this type onto any learning bar-
rier would be contentious, they are important in recognising
that programmers must locate and consolidate information of
diverse types and from an array of sources.

Questions relating to program comprehension and teamwork,
such as those exemplified above, can usually be answered
by examining code and other artefacts. They also seldom
yield to search mechanisms, bar the use of IDE-specific code
search, grep, or version control logs. To overcome barriers
of design, selection, coordination, and use, which represent
non-examinable information needs, programmers often turn to
the Web—it is this domain that the current study explores. It
has been reported that programmers spend on average 19% of
development time on the Web, spanning across many distinct
search sessions [6]. Several studies have investigated how
these search sessions unfold.

Brandt et al. [6], observing programmers building an online
chat room in the lab, found that Web searches express three
main goals: just-in-time learning of new skills and approaches,
clarifications of existing knowledge, and reminders for details
not worth remembering. Analysing query logs from Adobe’s
Developer Network, they also linked the structure of a given
query with its goal—the use of natural language signals a
learning motivation, while the use of code terms indicates that
a search for clarifications or reminders is more likely.

In addition to categorising Web searches by goal, dimensions
such as topic area and resource type have been used. In their
analysis of 15 million Windows Live Search queries, Hoff-
mann et al. [20] distinguished between such popular topics
as APIs1, troubleshooting, implementations, and development
tools. In a longitudinal field study, Goldman and Miller [16]
developed a more generic categorisation: code elements, code
ideas, sites, tools, and concepts. In an observational study
where students worked on small projects, Stylos and My-
ers [43] listed several types of Web resources that were made
use of, such as tutorials, documentation pages, and articles.
Finally, though search behaviour was not the focus of their
study, Hartmann et al. [18] found that programmers’ searches
are not necessarily about programming, but may be motivated
by an attempt to understand an application domain in general
(e.g., colour theory or musical scales).

1Unless otherwise stated, mentions of APIs in the current report
refer not to public service APIs (e.g., Twitter), but to programming
interfaces in general, including method names and language features.

Related studies have also analysed the corpus of questions
posted on popular programming Q&A websites such as Stack
Overflow2 [31, 44]. While the link between Web search and
Q&A websites is contentious, it is reasonable to assume that
questions are often posted as a result of failed Web searches
(indeed, Stack Overflow was designed to be used such that
Google is the UI [44]). According to Treude et al. [44], the
most popular questions seek instruction (How to crop an im-
age by 160 degrees from centre in asp.net?), explanations
for unexpected behaviour (iphone—Coremotion acceleration
always zero), or information on configuring development envi-
ronments (How to use windows emacs as svn client?). This is
aligned with other reports on Web search usage [6, 20, 43].

As a summary of programmers’ information needs, Figure 2.1
maps the search topics we have discussed onto six learning
barriers that programmers face [25].

2.1.2 Comparisons with the general public
The literature also describes online search practices of the
general public. As the scope of topics in this case is in-
finitely large, universal classifications are difficult. Rose and
Levinson [37] propose a resource-navigation-information tri-
chotomy, whereby people search online to either obtain a
resource, navigate to a known website, or learn by viewing
an unknown website. Using this classification, they note that
informational searches (not to be confused with the barrier of
information) account for 60% of all sessions. Programming
searches, however, are—by definition—mostly informational.

Differences also appear in query refinement practices, whereby
users rephrase their search term to retrieve higher-quality re-
sults. According to Silverstein et al. [40], 23% of search
sessions by the general public include some type of query
refinement; in comparison, little of this behaviour has been ob-
served in programmers [6] (the least when engaged in search
for clarification or reminding). This could be attributed to
the skill of the participants, the sophistication of search en-
gines, or programming as a domain being especially suited for
search [6] (indeed, search engines were originally optimised
for informational queries).

2.1.3 Tooling to support search
Studies on programmers’ information needs make a valuable
contribution to the design of tooling to support search. Cur-
rently, tools that attempt to bridge the gap between the browser
and the IDE are seldom encountered [19]—though many have
been presented in the literature, they are not in wide use in
industry. Some, such as Blueprint [5], Codelets [32] and Sea-
hawk [33], integrate search directly into the IDE, while others
like Assieme [20] and Mica [43] provide an optimised search
engine. The abstract domain of understanding rationale and
context in a piece of code is also tackled—Codetrail [16] and
HyperSource [18] generate a kind of meta-level documenta-
tion by linking the programmer’s historic browsing activities
back to relevant files and snippets in the codebase.

We hope that the current research will help to refine future
search tool design to better suit industry programmers’ work
practices.
2http://stackoverflow.com
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2.1.4 Changing use of the Web
Web use is an area of rapid change motivated by technological
improvements, culture, as well as trends; thus, programmers’
online search behaviour also exhibits subtle but decisive shifts
over time [22, 37]. For example, from 1997 to 2001 a de-
crease in willingness to view more than one page of results
was observed [37]—this could be explained by improved rank-
ing algorithms that place higher-quality links closer to the
top. Another change in behaviour that can be attributed to
technological advancement is programmers’ use of search
interfaces as a translator between concepts in different lan-
guages [6,17,43]—a strategy largely facilitated by as-you-type
results3 and automatic suggestions. Query construction and
refinement is also somewhat moulded by previous experience
in what makes efficient search terms, prompting cultural shifts
as new resources gather traction. For example, programmers
today may get higher quality results when using queries that
better suit Stack Overflow’s question format [44].

Finally, though Google has been reported as programmers’
search engine of choice in most studies, programming-
specific services are also emerging: SymbolHound4, for ex-
ample, retrieves higher-quality results for queries that include
programming-specific terms, and Hoogle5 is a similar service
for Haskell-specific queries. In contrast, Google handles code
symbols poorly at present [3] and would retrieve a collection
of get-rich-quick sites in response to [make $]6.

We hope that by adopting an in-the-wild approach, our study
captures a range of current search use cases.

2.2 Investigating Online Search Behaviour
Several empirical methods are available for peering into users’
online search patterns. Table 2.1 gives a brief account based
on a sample of studies discussed above.

As illustrated, a common approach is to analyse query or
transaction logs, which Jansen [21] defines as “an electronic
record of interactions that have occurred during a searching
episode between a Web search engine and users searching
for information on that Web search engine”. In practice, this
record can consists of search queries only, or search queries
augmented with browsing history and other user interaction
events. The current study adopts an approach where only
browsing history is collected, and search queries are later
extracted from URLs.

Depending on the nuances of the design, the method lies in
varying distances from diary studies, ethnographic studies,
and survey research [29, 38]. As such, it is applicable to an
array of problem domains, from Web search personalisation to
ranking algorithms [46]. But in the context of empirical soft-
ware engineering, it has not been widely considered among
other methods. For instance, though Lethbridge et al. [29]

3For example, Google Instant: http://support.google.com/
websearch/answer/186645
4http://symbolhound.com
5http://haskell.org/hoogle
6The notation [query] is used to indicate a verbatim Web search
query here and in all future cases.

mention tool log analysis in their comprehensive set of meth-
ods for studying software engineers, the tool considered is not
necessarily a browser.

The benefit of retrospective log analysis lies in it being un-
obtrusive while generating significant amount of data from
a sizeable number of users [21]. It also lends itself well for
longitudinal studies, which are vital in discovering trends
(e.g., [42]), as well as the full scope of topics that a search
engine should support [17]. Finally, search and browsing logs
are already automatically captured by most modern browsers,
which simplifies the data gathering process [21].

On the other hand, some obvious weaknesses are also inherent
in the method:

• User sessions are normally inferred from the IP associated
with a transaction, but one computer may have multiple
users [21].

• The log lacks user information such as demographic data
[21].

• Query log analysis can be seen as one use case among
the emerging applications of big data analysis. As such,
an established notion of privacy for the use of query logs
has yet to be defined [46]. Researchers can, of course,
protect individuals’ privacy by excluding certain metadata
from an event log, but this is technically challenging to
automate [46], and also imposes limits on the analysis [1,46]
(Figure 2.2).

• Individual events in the log are not a rich source of contex-
tual and qualitative data. Namely, while a detailed trail
of events is visible, it is difficult to gauge higher-level
goals [6, 17, 21].

Note that this last point remains the subject of debate. Rose
and Levinson [37], for instance, claim that by making use
of all information attached to a search event—the query, the
results returned, the results clicked on, and further search
actions pursued—the goal of a given session may be accurately
classified. However, the goal taxonomy for testing this claim
was developed in the context of searches made by the general
public, and whether it is granular enough to be applicable to
programming queries remains open to question.

While the most common, log analysis is not the only method
for studying search behaviour. Grimes et al. [17] compare
aggregate query log analysis to two other approaches: obser-
vational studies (in situ or in the lab), where participants are
observed as they perform tasks; and instrumented user panels,
where users install logging software on their computers for
some period of time. Both approaches account for the draw-
backs inherent in aggregate log analyses by supplying richer
contextual information, but in doing so they trade off scale,
privacy and, to some degree, naturalness. Between the two, the
instrumented panel evokes the more serious privacy concerns,
as participants may be apprehensive of making their browsing
data available over an extended period. As an approach similar
to diary methods, it is also vulnerable to limitations such as
memory biases and high participation burden [4]. On the other
hand, data from instrumented panel are rich in context, as

5
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Study Method Details Scale

General public search behaviour

Silverstein et al. [40] Query log analysis Retrospective analysis of search queries to
the AltaVista search engine over a period of
six weeks

~285 million user sessions, 1
billion queries

Spink et al. [42] Query log analysis Retrospective analysis of three sets of search
queries to the Excite Web search engine
collected in 1997, 1999 and 2001

~200 000 users, 1 million
queries

Rose and Levinson [37] Query log analysis Retrospective analysis of search queries to
the AltaVista search engine

~100–200 queries

Programmer search behaviour

Stylos and Myers [43] Observation Observation of ongoing progress in Java
student projects*

3 student participants

Hoffman et al. [20] Transaction log analysis Retrospective analysis of java-related queries
and click-through data from the MSN search
engine 339 search sessions

Controlled experiment A comparison of search performance using
Google and Assieme by observing
participants completing artificial search tasks

9 student participants

Goldman and Miller [16]** Instrumented user panel Analysis of Eclipse events and Firefox page
loads over the course of 1–3 weeks

4 participants; 646
development-related page loads

Instrumented user panel &
demographic survey

Analysis of Eclipse and Firefox
programmatic and user interface events over
the course of 17 days on average

11 participants

Brandt et al. [6] Controlled experiment An observation of participants’ Web use
while building an online chat room

20 student participants

Query log analysis Retrospective analysis of search queries to
Adobe’s Developer Network search engine

24 293 users, 101 289 queries,
69 955 sessions

Brandt et al. [5] Controlled experiment An observation of participants’ search for
example code while completing artificial
coding tasks and using Blueprint (Adobe
Community Help Search engine in the
control group)

20 professional programmers

* They also analysed screen recordings from a controlled experiment, but as the goal was not to study search behaviour, it is not included here.

** Note that four of the participants in both studies were a part of the research group.

Table 2.1. Empirical methods adopted in a sample of studies that investigate online search behaviour. Though several other studies reviewed in
Section 2.1 used empirical approaches, studies whose main goal was not to investigate search behaviour (e.g., tool evaluations) have been omitted here
for brevity.

Depth “Naturalness” Flexibility Scale Turnaround

Observational studies Very detailed Observed, tasks may be
artificial

Altered midstream as
required

O(50) users ~1 month

Instrumented user panels Observes computer
environment,
multi-tasking

Natural, tasks may be
edited by user

Hard to alter data
collection

O(100) users ~2–4 weeks

Aggregate log analysis Limited, no contextual
information

Completely natural Easy to run experiments
on Search Engine side

Millions of users Real time to
~1 week

Table 2.2. A comparison of aggregate log analysis, instrumented user panels and controlled experiments, reproduced from Grimes et al. [17].
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Less metadata
Less utility
More privacy

More metadata
More utility

Less privacy

Aggregate
Only aggregate data 

available (e.g., number of 
clicks, number of users 

issuing a query)

Query
Individual queries available 

without user or session IDs or 
sequencing information

Query session
Small sets of related queries 

(initial + follow-up) and 
associated click data available

Session ID
Groupings available between all 

queries made during a single 
session

User ID, session ID
Groupings available 

between queries made 
during a single session, as 
well as by the same user

INSTRUMENTED PANELS

Figure 2.2. The privacy-utility spectrum of query log analysis, based on Xiong and Agichtein [46].

participants are known individuals and can provide additional
details (refer back to Figure 2.2).

Table 2.2 summarises the three approaches on the dimensions
of depth, naturalness, flexibility, scale, and turnaround of data.
As the approach that combines the benefits of context provided
by controlled experiments, the unobtrusiveness provided by
log analysis, and the longitudinal nature of diary studies, the
current study employs an instrumented user panel, which is
especially suitable for capturing real-world context. For exam-
ple, the artificial programming tasks prescribed in lab studies
mostly involve building new features (refer back to Table 2.1),
but programmers have been shown to engage in a variety of
coding tasks during their daily work [28]. Among other studies
in the literature investigating programmers’ search behaviour,
that conducted by Goldman and Miller [16] represents the
only other use of an instrumented panel to our knowledge.

2.2.1 Conducting query log analysis in practice
Few practical guides exist to conducting query and transaction
log analyses in sufficient detail to replicate the method [21].
This presents a problem especially in the case of instrumented
panels, where the researcher must collect data in real time
from known participants (using a pre-existing dataset such as
in [6, 20] would make combining it with contextual data from
other sources difficult). While Jansen [21] implemented a
logging tool to do just this, it is no longer available to the pub-
lic. The commercial landscape is similarly lacking: despite
an abundance of off-the-shelf logging tools for conducting
user studies (e.g., Morae7), they are typically optimised for
short-term use and would be unmanageable over longer peri-
ods. The researcher also has the option of using commercial
time tracking software (e.g., RescueTime8, TimeDoctor9) by
instructing users to manually export and share the data peri-
odically. This presents three distinct disadvantages: (1) it is a
threat to the inherently unobtrusive nature of query logging;
(2) it requires finding creative ways of associating anonymous

7http://techsmith.com/morae.html
8http://rescuetime.com
9http://timedoctor.com

logs with other data; and (3) researchers have no control over
the format of the data, or which events are logged.

As such, a bespoke data collection tool has been developed
for the current study. A detailed description of this is given in
Chapter 3, where we also demonstrate how it overcomes some
of the weaknesses inherent in instrumented user panels.

3. METHOD
This chapter outlines the data collection and analysis methods
used in our study to explore development-related searches in
the wild. Our research questions were:

1. What do professional programmers working on familiar
projects search for on the Web?

2. What search strategies do they use in this process?

Based on the review of related work on programmers’ infor-
mation needs and approaches to query log analysis discussed
in Chapter 2, a set of criteria was established for the study:

Real-world context. To capture a diversity of tasks and
search queries [17], logs should originate from program-
mers working on real projects following their own schedules
and using routine search strategies.

Unobtrusiveness. To encourage participants to behave as nat-
urally as possible [17], any impact on the programmer’s
usual patterns of Web use should be minimised during data
collection.

Anonymity. To address privacy concerns around making their
browsing activity available [1, 46], participants’ browsing
data should remain fully anonymous even from the investi-
gators.

First-hand commentary. To address difficulties in under-
standing search goals [6, 17, 21], participants should an-
notate logs with contextual information.

We sought to meet these criteria by combining a longitudinal
instrumented panel approach with the experience sampling
element often found in diary studies [4, 36]; we refer to this
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approach as the IP-ES (Instrumented Panel and Experience
Sampling) method. Before outlining procedural details, this
chapter describes the design of the software developed for
conducting the study.

3.1 The Logging and Annotation Software
The tool presented here has two main features: the researcher’s
ability to collect continuous browsing logs from a known par-
ticipant for a set time period; and the participant’s ability to
anonymously annotate a sample of the logs with contextual in-
formation. A suitable existing tool to achieve these means was
not identified—a custom system was thus designed and built,
integrating a commercial survey platform with the automated
collection of browsing logs. Indeed, query log analysis is often
complemented with traditional long-form questionnaires for
participant data (e.g., [9,35]); in this case, however, the survey
platform was employed foremost as an experience sampling
tool.

The system comprises of a secure database and server, a
browser extension for the participants (the “instrument” in
“instrumented panel”), and a data exploration interface for the
investigator. TypeForm10 was chosen as the survey platform
due to its simple public-facing Web API and the option to
supply hidden fields to surveys (e.g., participant ID)11. These
components are illustrated in Figure 3.1 (p. 9).

Central to the system from the participants’ point of view
is the browser extension. Upon installing the extension, a
continuous background process is launched that sends one
batch of browsing logs, extracted from the browser’s history,
to the research database approximately once per 24 hours for
two weeks, facilitating iterative and continuous data analysis.
Though search patterns were the primary research interest, the
extension collects all URLs from the browser’s history; this
is due to the technical intricacy of log classification and the
desire to capture a variety of (possibly lesser-known) search
engines.

The extension also handles the experience sampling element
of the study: for each batch of logs, participants are prompted
to fill in follow-up surveys for search queries flagged by the
investigator, providing contextual annotations. Further, the
extension provides a link to a one-off enrolment questionnaire
to be filled out in the beginning of the study. Its use lies
in collecting wider demographic and contextual information
about each participant, such as their experience and work
practices as a programmer.

Figure 3.2 shows a screenshot of the plugin during a hypo-
thetical study. On the investigators side, the system provides
a secure data management interface for analysing incoming
batches and flagging programming queries for follow-ups; this
admin panel can be seen in Figures 3.3 and 3.4 (p. 10 and 11).

10http://typeform.com
11TypeForm is also widely considered a modern, accessible survey
platform, though we would point out its focus on expert computer
users. Working with programmers, we assumed that a lack of experi-
ence with computers will not cause usability issues. Of course, issues
caused by other factors are still a possibility.

Figure 3.2. The browser extension installed by participants, as seen in
the middle of a hypothetical study. The screenshot shows (1) a randomly
generated participant ID used to associate survey responses to specific
logs; (2) a link to the enrolment survey (this is highlighted in the begin-
ning of the study and disappears automatically once the survey has been
completed); and (3) a list of batches that have been shared along with
links to any corresponding follow-up surveys, if available. The integra-
tion with TypeForm enables the extension to display a friendly “Thank
you” message where follow-up surveys have been completed.

3.2 Mitigating Privacy Concerns
By adopting an approach that prioritises real-world context, the
instrumented panel sacrifices a great deal of privacy [1,17,46].
It was therefore paramount to provide participants with options
of reducing perceived invasiveness and increasing sense of
control. The design of the system reflects this effort in the
following features.

Authentication tokens. Though participants in an instru-
mented panel are personally recruited and therefore known
individuals, the use of server-generated (but locally stored)
participant IDs and authentication tokens provides a layer
of anonymity that prevents their association to a given batch
of logs. The participant ID is forwarded as a hidden field
to surveys in lieu of names and emails, while the authenti-
cation token, invisible to the participant, is included in the
HTTP header of each request made to the server, prevent-
ing malicious requests from third-party devices. Though
this mechanism prevents identifying individuals directly,
full anonymity cannot be guaranteed—falling under the
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Google Chrome 
extension

Participant sees the history of 
logs shared and is prompted to 
fill in follow-up surveys

Admin panel

Investigator explores incoming
data and flags programming 
queries for follow-up

Server

Hosts surveys

Database

Stores logs and
survey responses

PARTICIPANT

INVESTIGATOR

Collects and sends 
browsing logs

Notifies of new 
follow-up surveys

Provides server with 
survey responses

Figure 3.1. The components in the IP-ES tool.
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Figure 3.3. The admin interface used by the investigator to explore incoming data and flag programming queries for follow-ups. Batches are grouped
on the left by date, while all logs in the chosen batch is shown on the right. The screenshot given here illustrates a view of logs that have already been
annotated by the participant; see Figure 3.4 for a view of raw incoming logs.
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Figure 3.4. A view of a given participant’s raw logs on the admin panel.
To reduce the manual labour required for filtering, the interface visually
highlights logs that can be confidently considered online searches based
on their URL pattern.

category of partial de-identification [46], it is vulnerable
to data-linkage attacks whereby identities can be inferred
indirectly (e.g., from metadata found in the logs).

Timeframe. The extension provides settings for configuring
a timeframe during which the collection of browsing ac-
tivity is allowed. For example, participants can specify a
timeframe of 18:00–23:00 if they engage in most of their
development activity in the evenings.

Blacklisted URLs. Participants can exclude specific URLs
from shared batches. The system instructs participants to
make use of regular expressions when adding items to the
blacklist—as our user group consisted entirely of program-
mers, we were able to assume some familiarity with regular
expressions, allowing for fine control over log filtering.

Ability to review what has been shared. Participants can
download copies of batches for review (Figure 3.2).

In addition to the above, we encouraged participants to make
use of private browsing (Incognito) mode for browsing that
they wished to keep private.

3.3 Conducting the Study
This study was approved by the UCL Interaction Centre Ethics
Chair, under the project ID Number UCLIC/1617/001/MSc
Marquardt/Hein.

3.3.1 Participants
18 participants were recruited (14 male, 4 female; average age
of 32.1) for the study via a short recruitment survey posted
on social media and mailing lists (Appendix A). (Particular
effort was made to increase exposure to female programmers
by advertising to multiple women-only engineering groups).
The purposes of the survey were two-fold: (1) to ensure a
significant amount of time spent programming each day (in
order to generate enough relevant logs), and (2) to ensure
Google Chrome as a browser of choice (the only browser
at the time compatible with the instrument). A prize draw
between all participants for two £50 Amazon gift vouchers
was offered as remuneration.

Participants represented a range of nationalities, but nearly
half resided in the UK. Most had between 3–10 years of pro-
fessional programming experience, and were engaged in a
professional software project throughout the duration of the
study, working mostly alone or in small teams of up to four
people. Rating their familiarity with the codebases and tech-
nologies used in their ongoing projects on a 7-point Likert
scale, an average familiarity of 5.28 (SD = 1.5) and 5.83 (SD
= 1.1) was reported, respectively. Our participants can thus be
said to represent industry software engineers who are past the
novelty effect of a new project, but still work in teams and may
not intimately know all areas of the codebase or technologies
used. See Table 3.1 for full participant profiles.

3.3.2 Procedure
Figure 3.5 illustrates the main phases of the study: (1) pi-
loting of the instrument and the surveys, (2) collection of
programming-related searches and follow-up annotations, and
(3) exit interviews.

Preparations. A pilot study was conducted with a single partic-
ipant (27-year-old male involved in an intensive programming
project) over a period of five days to test the instrument and
gauge the volume of data that would be generated. The pilot
allowed the admin panel to be equipped with suitable analysis
and sampling tools and iterate on appropriate wording in the
survey questions. Further, an assessment was made of the
demands placed on participants when completing follow-up
surveys, which were modified to fall within a completion time
window of less than five minutes [4].

For the main study, participants who responded to the recruit-
ment survey were invited to take part via an email detailing
the purpose of the research (Appendix E lists all correspon-
dence with participants), and including digital copies of the
information sheet and consent form (Appendices F and G).
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Gender Age Home region Experience Current project Team size
Total years Student Professional Hobbyist

DSP1 M 22 Europe 1 · · Student project 2–4

DSP2 M 38 South America 1 · Professional 1

DSP3 F 25 Europe 1–2 · · · Professional 2–4

DSP4 M 25 North America 3–5 · · · Professional 2–4

DSP5 M 26 Europe 3–5 · · Professional 11–20

DSP6 M 27 Europe 3–5 · · Personal 1

DSP7 F 30 North America 3–5 · · Professional 20 +

DSP8 M 24 Europe 6–10 · · · Professional 2–4

DSP9 M 27 Europe 6–10 · Professional 2–4

DSP10 M 31 Asia 6–10 · · Professional 1

DSP11 M 33 Europe 6–10 · · · Personal 2–4

DSP12 F 35 Asia 6–10 · · Professional 1

DSP13 F 35 Europe 11–20 · · · Professional 11–20

DSP14 M 36 Europe 11–20 · · · Professional 5–10

DSP15 M 38 Europe 11–20 · Professional 5–10

DSP16 M 34 North America 20 + · · · Professional 2–4

DSP17 M 46 Europe 20 + · · Professional 1

DSP18 M 46 Europe 20 + · · Professional 5–10

Table 3.1. Participant profiles. “DSP” refers to Diary Study Participant, representing instrumented panel users. “Diary Study” was chosen so as not
to confuse “IPP” (Instrumented Panel Participant) with “IP” (Interview Participant).

Planning and preparation
Outline study and define timeline
Design and implement logging software
Prepare surveys

Pilot
Test logging software
Gauge data volume & 
test sampling methods
Refine survey

Logging period
Collect browsing logs (14 days per participant)
Flag programming queries
Collect participant query annotations
Check in with participants
Explore incoming data, begin analysis

Recruitment
Advertise recruitment survey
Send participation invitations

Post-study briefings
Exit interview invitations
Prize draw

Data analysis

Exit interviews
Discuss participation experience

4 DAYS 22 DAYS

7 DAYS

Figure 3.5. Timeline and main phases of the study. Note that each individual participant’s data collection lasted for 14 days, but participants began the
study at different times, so logs were collected for 22 days in total.
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On this day, what were you doing when you searched for. . . ?

Designing
You were analysing a new problem and mapping out the broad flow of
code for solving it (e.g., exploratory research for a new feature, API
design).

Building
You were producing code for new program behaviour (e.g., adding a new
feature) and getting it into a compatible state.

Editing
You were editing existing code and returning it to a compatible state (e.g.,
fixing bugs, refactoring, or rearchitecting).

Understanding
You were determining information about code such as the inputs and
outputs to methods, what the call stack looks like, why the code is doing
what it is doing, or the rationale behind a design decision (e.g.,
investigating a bug, reviewing pull requests).

Testing
You were creating or running tests, or otherwise ensuring that code is
behaving as expected (using a systematic approach outside of your main
edit-debug cycle).

Managing overhead
You were engaged in activities related to the development environment,
such as setting up repositories, build or deployment scripts, or managing
dependencies.

Other
Optionally specified by participant

Table 3.2. The choice of programming-related activities offered to an-
swer the question What were you doing when you made this search?

Participants who accepted the invitation were asked to return
a signed consent form and to indicate a preferred start date for
their participation.

On the first day of the study, participants received instruc-
tions for the set-up and use of the browser extension. Upon
installation, a welcome page presented users with further de-
tails of how data would be collected for the following two
weeks, and the configuration options described in Section 3.2
(Appendix H). It also prompted them to fill in the enrolment
survey (Appendix B).

Data collection. For each batch of logs shared during
the 14-day period, the researcher manually flagged three
programming-related search queries for a follow-up; these
were used by the system to automatically populate a TypeForm
survey. Participants were prompted to fill in new follow-ups
by a notification icon visible on the browser extension. 12
participants also opted to receive daily SMS survey reminders.

The survey asked participants to recall the following for each
flagged query (paraphrased for brevity):

1. What was the trigger for this search? What problem were
you trying to solve?

2. What were you doing when you made this search?

The first question required a short free-text response, and
the second offered a choice between the most common
programming-related activities identified by LaToza and My-

ers [28], definitions paraphrased in lay terms; these are listed
in Table 3.2. The full survey with example searches is given
in Appendix C.

Query flagging. To minimise the risk of biased retrospec-
tion and maximise recall accuracy in the follow-ups [4, 12],
flagging search queries promptly was essential. To this end,
the system sent notifications of new batches to the investi-
gator and highlighted them in the admin panel. The three
search queries were then flagged using an iterative sample-
and-classify method built into the interface, illustrated in Fig-
ure 3.6.

Draw a random 
sample of three logs

Flag programming-
related queries

Publish follow-up 
survey

<3 queries flagged
and more logs to sample?

3 queries flagged?

Figure 3.6. The iterative sample-and-classify method used in the system
to flag three random programming search queries from a batch of logs
without manually classifying them all.

The sample-and-classify approach reduced the labour-intensity
of manual filtering, ensuring also that a variety of queries
was selected without bias. However, as the study progressed,
we occasionally ruled against certain queries that emerged
with the method to include a diverse set of searches and to
avoid duplicates (for example, query refinements part of a
single search session such as [mongo distinct date] and
[mongodb distinct date from datetime]). In the end,
a follow-up was only published if the batch contained at least
three search queries from separate search sessions. To further
aid participants in recalling the context of the flagged searches,
each was accompanied in the survey by a timestamp indicating
when the search was made.

Exit interviews. Following the data collection phase of the
study, participants were thanked for their contribution via
email and subsequently invited to take part in semi-structured
exit interviews (note that participants were told that declining
to be interviewed would not impact their participation in the
prize draw). The invitation was accepted by nine participants
(8 male, 1 female, average age of 29.3).

To preserve their anonymity, interviewees were not asked to
elaborate on the searches they made during data collection.
Instead, the interviews were used as a complementary method
to evaluate the design of the study and participant perceptions
towards notions of privacy, control, and awareness of their
search patterns while being tracked (the interview protocol
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is provided in Appendix D). All interviews were conducted
in-person within at most four days after data collection period
and lasted between 10–20 minutes.

3.4 Analysing the Data
Three distinct datasets were generated during the study:

1. the browsing logs gathered from participants during the
two-week data collection period,

2. a set of annotated search queries within these logs, and

3. exit interview transcripts.

To identify programmers’ search motivations and strategies,
we applied thematic analysis to the annotated search query log.
The full log corpus was also subjected to basic data aggrega-
tion and statistical analysis, but its value lay primarily in its
metadata, as participants left behind an electronic trail of their
interactions with the browser plugin and surveys (a benefit of
digital experience sampling [4]). Triangulated with themes
drawn from exit interviews, this supported the evaluation of
the IP-ES method (Chapter 5).

Responses to the enrolment survey formed a fourth dataset,
but were not separately analysed. Instead, they were used to
create participant profiles and cross-check themes emerging
from the annotated query set (for example, to verify whether a
search topic lay within a participants’ expertise).

3.4.1 Analysis of the annotated query logs
Data monitoring and preparation. To facilitate iterative analy-
sis (and to prevent the large volume of qualitative data from
becoming unwieldy), incoming logs were continuously moni-
tored and prepared for analysis.

For monitoring, a Metabase12 dashboard was set up on the re-
search database. This enabled us to keep track of data volume
and surveys completed, but also to run SQL queries for ad hoc
questions such as the range of search engines used.

On the admin panel, all logs were labelled as “programming
query” or “other browsing”, and cases of query refinements
were identified in the subset of annotated queries. Here, a
sequence of queries with no gaps longer than five minutes
was automatically identified as a search session [6, 40]. The
number of query refinements in each identified session was
then manually verified.

To allow iterative coding during data collection, an automated
transfer was set up between TypeForm and Trello13. Trello is
a Web-based interface normally used to manage tasks in a kan-
ban workflow. Because of its comprehensive tagging, filtering
and grouping features, however, the platform was employed
as a coding tool. New TypeForm responses triggered the au-
tomatic creation of new Trello cards, each representing an
annotated search query (seen in Figure 3.7). Meanwhile, this
queue of cards was continuously processed by the researcher
for coding and making note of cross-references. When new
filtering needs emerged based on enrolment survey responses

12http://metabase.com
13http://trello.com

(e.g., comparisons across level of experience), cards were
tagged in bulk with ad hoc calls to Trello’s and TypeForm’s
APIs.

The data monitoring and preparation workflow is illustrated in
Figure 3.7.

Open coding. Annotated queries were coded using an induc-
tive, bottom-up approach [8, 36] to signify

1. suspected search motivation;

2. discrete characteristics, ranging from the explicit (such as
whether programming terms are present in the query) to
the interpretive (such as whether the annotations indicate
collaboration with fellow programmers).14

With reference to the first point, the approach is similar to that
adopted by Brandt et al. [6], but with the benefit of increased
confidence in classification accuracy afforded by the added
context (the query, query refinements, the search engine, the
annotation, and programming activity labels were all used to
infer search motivations).

With reference to the second point, though much of the coded
characteristics failed to yield eventual insights, an opportunis-
tic approach was taken whereby the researcher coded for as
many potential themes as possible [8].

Figure 3.8. Card sorting to discover search goal clusters.

Card sorting. When data collection was completed, all an-
notated searches were clustered to form distinct classes of
search goals. To this end, card sorting was carried out using
printed Trello cards (Figure 3.8). During this process, the
search motivations initially coded were reviewed and further
refined, acting as a kind of axial coding stage [36]. Though
card sorting is typically employed to evaluate website con-
tent and navigation structures [11, 30], we found the iterative
grouping and naming approach useful in cluster discovery.

3.4.2 Thematic analysis of exit interviews
Audio from the exit interviews was transcribed verbatim, and
thematic analysis was conducted on the content. Snippets from

14More formally, Braun and Clarke [8] describe the first class of
themes as semantic and the second as latent.
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Server

Database

Admin panel
Follow-up monitoring; query 
flagging, classification, and 
refinements.

Metabase
Data monitoring and ad hoc 
SQL queries.

A card on Trello
Iterative coding and 
analysis.

Participant fills in 
follow-up…

Figure 3.7. The data monitoring and preparation workflow. Queries were flagged and logs classified on the admin panel. Data volume and follow-ups
were monitored on a Metabase dashboard, which also allowed for ad hoc SQL querying. New follow-up responses on TypeForm triggered the creation
of cards on Trello, ready for coding and analysis.
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each interview were then organised into a code matrix for a
high-level overview and for ease of comparison (Appendix I).

In the next two chapters, we present the results of these analy-
ses separately: Chapter 4 discusses our findings on program-
mers’ online search patterns, while Chapter 5 focuses on eval-
uating the IP-ES method.

4. FINDINGS: DEVELOPERS’ ONLINE SEARCH PAT-
TERNS

This chapter presents our findings in two sections. To answer
our first research question about programmers’ Web search
motivations, we identify seven search goal classes to com-
plement those discussed in Chapter 2. To answer our second
research question about the search strategies employed, we dis-
cuss aspects such as query construction and alternative search
engines.

Before delving into the findings we provide a brief overview
of the data corpus.

4.1 The Data Corpus
The complete corpus consists of 31 893 logs collected from
18 individuals in 201 batches15 (Appendix J). Of those logs,
2 488 were classified as programming searches: participants
made an average of 15.9 programming searches per day (min
= 1, max = 83, SD = 17.2). 357 programming queries were
flagged for follow-up. Though 100% of the flagged queries
were annotated by participants, seven were falsely flagged as
related to programming, and participants could not recall the
context for three. A total of 347 logs thus makes up the dataset
of annotated queries.

4.2 Search Goals
Drawing on the results of card sorting and thematic analysis
of the annotated queries, the following classes of search goals
were identified, ordered by prevalence (occurrences given in
brackets):

Hunting down just-in-time practical techniques.
Practical how-to’s for immediate use where the spe-
cific APIs or language features are often unknown. (99)

Understanding API or library particulars. Further infor-
mation about a known API or library, often concerning
low-level mechanics. (82)

Reminders. Forgotten or obscure interface names or syn-
tax. (62)

Learning, research and investigation. Best practices, trade-
offs and popular opinion about a given technology, and
introductions to new concepts. (30)

Troubleshooting. Fixes for an error or discrepancy. (29)

Resources Publicly available libraries to integrate into a
project, programming or tool references, or other re-
sources. (25)

15Recall that a “batch” refers to a participant’s shared browsing logs
from the past 24 hours.

Navigation. Shortcut to a known site. (17)

We were unsure of the category of two searches with insuffi-
cient context, and left one outlier uncategorised—a GitHub
code search in the participant’s own codebase checking
whether an API had been used before.

Next, we discuss each goal briefly, providing examples from
the annotated query dataset. For brevity, irrelevant extracts
have been omitted from some annotations. Where it provides
better illustration, some examples include query refinements
from the same session. Unless otherwise indicated, all exam-
ple searches have been made on Google.

4.2.1 Hunting down just-in-time practical techniques
With almost a third of all searches falling under this category,
finding practical techniques for immediate use was the most
common search motivation among our participants. These
how-tos concern the appropriate choice of unfamiliar APIs,
combining several APIs, or wielding an API to a particular
use case. For example:

[angular route uib tab] “Was wondering how to
combine UIB library’s tab directive with Angular UI-
Router.” (DSP7)

[react setstate sub property] “In React, state is
immutable so you have to reset the state as a whole, but I
wanted to mutate a sub key and set the state in one line.”
(DSP8)

The higher-level searches in this category often imply an un-
awareness of whether the solution would be a quick one-liner
or an intricate mix of several APIs. The query therefore often
describes the desired outcome in lay terms, as exemplified
here:

[bootstrap button next to input] “I wanted to
align a button next to an input field using Bootstrap.”
(DSP17)

4.2.2 Understanding API or library particulars
A second common search goal concerns the particulars of
an API or library. Though it occasionally overlaps with the
search for practical techniques and reminders, the annotations
given here often explicitly mention official documentation
or codebases (indeed, programmers looking for a practical
how-to may not necessarily care for the source, sampling re-
sources opportunistically). In addition to generic documenta-
tion searches such as [php preg_match] (DSP2), questions
in this category include Is this supported? and How has it
been implemented?, as exemplified below:

[forcelayout api] “Was searching for an ability to
select parent node in D3 force-layout.” (DSP9)

[golang copy built in] “I was trying to understand
memory efficiency when [this function is] used with
slices.” (DSP11)

Absent in other cases, we also find searches here that occur
when reading code authored by someone else:
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[strlen] “I saw this php function in code and didn’t
know what it did.” (DSP3)

[java comparator interface]→ [java default
string comparator]16 “I was reviewing some code
written by a consultant and was wondering why they
were not using methods/classes from the standard library.”
(DSP16)

Determining rationale in existing code has been found to be
the most popular topic in code-related questions (e.g., Why
wasn’t it done this other way?) [27], and we anticipated on-
line resources to be unhelpful in these cases (instead, expert
teammates are a typical source of information [27]). But our
findings show that the Web is used, too, albeit on a small scale.

4.2.3 Reminders
The third popular class of search goal was that of recalling for-
gotten interface names or syntactic details, often by explicitly
seeking out examples. Searches here include:

[ubuntu search packages] “Searched after the com-
mand that’s used to search for programs on Linux
Ubuntu.” (DSP3)

[URI uri = new URIBuilder] “To make sure the
syntax is correct.” (DSP12)

DuckDuckGo: [java throw exception example]
”Looking for the correct syntax for method error throw-
ing.” (DSP1)

Broadly corresponding to the category described by Brandt
et al. [6], the searches here act as quick lookups for obscure
details or those deemed not worth remembering. Another sim-
ilarity in the two studies, people often had a specific website
in mind with these queries—they had likely made the search
in the past and knew exactly where to look. In this example,
“mdn” refers to Mozilla Developer Network:

[mdn transform origin] “CSS transform syntax.”
(DSP2)

Targeting a specific resource may also explain the low occur-
rence of query refinement in reminder searches.

4.2.4 Learning, research and investigation
30 searches were classed under the goal of general technol-
ogy research (e.g., [job queue] (DSP6)), determining best
practices (e.g., [bad things about scala implicits]
(DSP14)) or investigating trade-offs, (e.g., [svg vs png]
(DSP3)). Initially perceived as separate categories, there are
subtle differences within this group between studying known
concepts and learning about something new entirely. The
former often occurs when planning a change:

[segmented circle css] “We’re implementing a
new design that looks like a donut cut into 8 parts—
wanted to see what was possible with CSS vs SVG.”
(DSP7)

16We indicate query refinement here and in all future cases with
[query]→ [query].

Learning about something new entirely, however, often occurs
when embarking on an unfamiliar task:

DuckDuckGo: [best programming language for
both ios and android] → [app dev design,
what languages to use]→ [code java app for
ios and android] → [write helloworld ios
app in java] “Been tasked with designing an app, no
idea where to start.” (DSP1)

A third subtly different group is formed of searches that seem
to exhibit casual curiosity, such as:

[boilerplate template] “My colleague was talking
about boilerplate templates and that I should check them
out. So I Googled to find out what they were.” (DSP3)

What links them all is a general lack of immediate
actionability—information from various sources is gathered
and internalised to be made use of in later lower-level tasks.

This high-level use case was rarely captured in the studies
reviewed in Chapter 2. Though Brandt et al. [6] identify a
learning category, too, we make a distinction here based on
actionability. In our classification, their examples would likely
fall under just-in-time practical techniques (e.g., [update
web page without reloading php]). We suspect that
the lack of a mindful planning stage in laboratory task set-ups
(e.g., [6, 43]) prevents capturing cases of higher-level learning.

While participants were exploring unfamiliar concepts in these
searches, most were within the general bounds of the expertise
they had reported in the enrolment survey. And with regards to
the few exceptions (e.g., the search by DSP1 above), searches
were still opportunistic in the sense that the lack of understand-
ing was a blocker to some immediate task. We conclude that
cases of long-term learning—such as learning a programming
language from scratch—are largely missing from our dataset.

4.2.5 Troubleshooting
With similar prevalence to research and investigation, 29
searches were made with the goal of fixing errors or discrepan-
cies. Unlike searches in other classes, the queries made here
are consistently structured, often either describing the problem
or copying the full text error message encountered, as in these
searches:

[show is not a member of org.apache.spark.
sql.GroupedData] “I didn’t know why I couldn’t show
GroupedData. I wanted to find how to do it.” (DSP14)

[Possible infinite loop detected] “This was
an error message from the percona tools I was using to
sync up the replica instance with the master. I never dug
into it too deeply though because I think it just required a
better index value to work with.” (DSP4)

This makes them straightforward for a researcher to manually
classify, especially when considered as part of a surrounding
session.

It is also here that we encounter the most query refinement,
with about half of the queries being refined at least once. For
instance:
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[babel-jest] → [can’t console log in babel
jest]→ [logging in babel-jest]→ [jest-cli
16] “Thought I was in a different file than I actually was
in so when running specs I couldn’t get console.log to
work.” (DSP5)

4.2.6 Resources
Each of the above classes corresponds to the informational
goal in the resource-navigation-information trichotomy of
Web searches discussed in Chapter 2 [37]. But the remain-
ing classes on our list—resource searches and navigational
searches—correspond to the other two. Their low rate of oc-
currence reaffirms that programmers more frequently use the
Web for informational searches compared to the general public
(about 60% [37]).

In the majority of cases, participants sought third-party tools
and libraries to integrate into the current project. For instance:

[json minify] “I wanted to find an online minifier
tool to reduce whitespace in JSON. Standard JS minify
wouldn’t work.” (DSP10)

[rails kineses gem] “I’m looking at migrating our
analytics pipeline to AWS and so I wanted to see if there
were any gems to support this.” (DSP15)

The rest were searches for reference tables such as character
codes or keyboard shortcuts (e.g., DuckDuckGo: [unicode]
“Looking for a unicode table” (DSP1)), or resources such as
dummy data. Searches in this category stand out for being just
as likely to occur during coding as they are during higher-level
planning and research activities.

4.2.7 Navigation
Made largely out of convenience, navigational searches intend
to reach a specific website (e.g., [mongodb] to navigate to
mongodb.com (DSP18)). It is questionable whether they are
really searches, but their prevalence illustrates the deceptive-
ness of queries isolated from context: at face value, many of
them indicate information goals (misleading queries will be
further discussed in Chapter 5). Of course, the end-goal of
navigating may well be to learn about an API, as is likely the
case here:

[fcm notification android example] “For just
navigating to the firebase homepage.” (DSP12)

But classifying navigational queries based on their informa-
tional goal distorts the proportion of genuine searches where
the desired website is unknown.

As a complementary summary to Figure 2.1 from Chapter
2, Figure 4.1 maps our search classes onto Ko, Myers and
Aung’s [25] learning barriers. Similarly to previous work,
we found that most Web searches are conducted to overcome
selection, coordination, and use barriers—these are the in-
stances of picking up just-in-time techniques and studying
APIs in more detail. However, we add a previously unnoted
use of online search—the search for references and third-party
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libraries—and include learning goals of a much higher level
in our category of research and investigation.

The rest of this chapter discusses some specific search strate-
gies used by our participants.

4.3 Search Strategies

4.3.1 Choice of search engines
Though most people indicated the use of several alternative
search engines in the enrolment survey, their proportional
use in the log corpus was trivial (5%). Most participants
used Google as their primary search engine (DuckDuckGo17

was the search engine of choice for one participant), only
seldom turning to specialised services to search documentation
(e.g., Mozilla Developer Network18), code repositories (e.g.,
GitHub19), or language-specific symbols (e.g., Hoogle20). A
single session may have included the use of multiple of these
services, as seen here:

Google: [sumo collector filters]→
Google: [sumo collector filters include]→
Sumo Logic Community: [filters include]→
GitHub SumoLogic repository: [filters] (DSP4)

Few of the queries to documentation websites and symbol
search engines were flagged for follow-up so we cannot com-
ment on their context. But for the ten GitHub code searches
that were annotated (out of 92 total), motivations varied
from low-level behaviour investigations to source-code-as-
documentation lookups.

Considering non-browser-based search tools, only one par-
ticipant indicated in the enrolment survey that their IDE is
equipped with search enhancements. Those who claimed to
use offline documentation browsers (e.g., Dash) still made
numerous Web searches for API particulars. Most participants
instead described established workflows for rapidly switching
between code and browser.

4.3.2 Query construction
Comparing the use of natural language to the use of code terms
in search queries, we encountered more code terms in reminder
searches than we did in other classes, in line with previous
studies [6]. 46% of queries in reminder searches contained
code terms, compared to 38% in searches for API particu-
lars and 15% in searches for practical techniques, whereas
reminder searches contained the vast majority of queries with
code terms only.

On the other hand, the use of grammatically correct natural
language such as questions or complex noun phrase modifiers
occurred, somewhat counterintuitively, similarly across all
search goals:

[does md5sum read file into memory?]
(DSP15)

17http://duckduckgo.com
18http://developer.mozilla.org
19http://github.com
20http://haskell.org/hoogle

Queries per session

1 query per session 44.54%

2 queries per session 43.7%

3 queries per session 13.73%

4 queries per session 12.61%

> 4 queries per session 12.04%

max queries per session 10

avg queries per session 1.87

stddev queries per session 1.56

Table 4.1. Queries per session.

[what determines if a site is considered
intranet for ie compatibility view
settings] (DSP16)

[javascript library that embed a string
and if find an embed content render] (DSP2)

4.3.3 Query refinement
Table 4.1 shows that most search sessions were made up of a
single query, while the average number of queries per session
was 1.87. This indicates more query refinement than previous
reports of 1.45 queries per session among programmers [6],
but less than the 2.02 made on average by the general public
[40]. We are hesitant to draw any conclusions: the annotated
query dataset contains too few searches for any meaningful
statistical analysis of query refinement compared to the large
volumes of aggregate log analysis.

The context included, however, allows peering further into the
qualitative aspects of query refinement among our participants.
In addition to differences across goals discussed in Section 4.2,
we find sessions that start with general and descriptive queries
and end with specific ones as the programmer discovers ap-
propriate APIs (a practice also reported in past studies [20]).
For example:

[postgres export database schema]→
[psequel view schema]→
[pg_restore]→ [pg_dump] (DSP17)

We would also like to note one particular case of query refine-
ment where search language itself is altered:

[step by step json lexer]→
[comme costruire un lettore json]→
[como crear lexer json] (DSP1)

Two participants indicated in the enrolment survey that they
occasionally make use of languages other than English in
programming queries. One notes:

“Results in Spanish tend to have more extensive expla-
nations. Results in Italian or French yield fewer results
typically.” (DSP1)

With English being the mainstream language of the IT indus-
try, as well as the standard in most programming language
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keywords21, it is rational for non-native speakers to seek out
English resources. However, the occasional use of other lan-
guages has implications for studies on programmers’ Web use.
Capturing these cases and comparing them to English-based
browsing can reveal how programmers evaluate resources—
especially when found in query refinements.

4.3.4 Cross-domain translations
Occurring primarily in reminder searches, using analogies to
recall API methods was common among participants, as noted
also in previous studies [6, 17, 43]. In these cases, the utility
of Web search in addressing the “vocabulary problem” [43] is
evident, and enables unplanned learning.

The approach is likely mostly subconscious: people simply
query using familiar terminology. We therefore typically relied
on annotations and query refinements when tagging searches
with this label. For example:

[jquery add to list]→
[jquery add to array] (DSP3)

However, deliberate use of analogous terms occurred, too,
where participants mentioned the corresponding APIs explic-
itly:

[mongoid update_attributes] “Was looking for the
equivalent of a Rails ActiveRecord method in the Mon-
goid persistence ORM.” (DSP18)

4.3.5 Reliance on social validation
A prominent theme drawn from annotations which has not
been discussed in past studies on programmers’ search prac-
tices is the importance of social proof and best practices. Intu-
itively, programming is, on the lower-level, an objective field
where the choice of APIs or methods is either appropriate or
inappropriate (less so, of course, when it comes to higher-level
design choices). Still, mentions of “the best” or “the accepted”
way of doing things were frequent in questions of practical
techniques, API use and technology research alike:

[react pass state to child] “I wanted to pass the
entire react state object to a child component, this is fairly
simple to ‘just do’ but I was looking for the accepted and
‘safe’ way of doing so.” (DSP8)

[best process supervisor] “I was . . . looking for
people’s opinion on Linux process supervisors/monitors
for managing web processes, workers, etc.” (DSP6)

[mysql using index]→
[mysql indexes best practices] (DSP2)

5. METHOD EVALUATION
Having discussed our findings on programmers’ online search
patterns, we now turn to a methodological review. The study
criteria established dictated that the study should (1) capture
real world context, (2) be unobtrusive, (3) allow for anonymity
from the investigator, and (4) include participant commentary.
To evaluate the IP-ES method against these criteria, we present
themes drawn from exit interviews alongside supporting meta-
data from the log corpus. We also illustrate the investigator’s

21Origin country search on http://hopl.info/.

perspective, discussing practical issues of conduct and analy-
sis and potential future applications. But to begin, we present
a brief overview of participation rates and data volume.

5.1 Participation Rates and Data Volume
22 people responded to an invitation to participate that was
sent to a total of a 107. Two of those initial participants with-
drew from the study on the first day having shared no batches,
while the rest took part for the full two weeks and responded
to all follow-up surveys. The data for a further two partici-
pants were deleted on account of consistently delayed survey
responses and difficult-to-interpret annotations, resulting in an
eventual total of 18 participants. This is well below the poten-
tial scale of a traditional instrumented panel, and is regarded
as insufficient for improving search engine heuristics [17].
However, being interested in the qualitative aspects of each
search, we consider the participation rate adequate.

While a maximum yield of 756 search queries could have been
flagged with this number of programmers (three queries a day
for two weeks), less than half of this (357) was flagged and an-
notated in reality. Firstly, 27 batches contained less than three
programming queries from separate search sessions while 55
contained none; participants therefore received a follow-up
survey only 60% of the time on average (see Appendix J). Sec-
ondly, the expectation of three annotations per 24 hours could
not be strictly enforced. The standard 24-hour sharing interval
was prolonged during time spent away from the computer—
for example, a batch of three days’ logs would be shared on a
Monday morning after a weekend offline. This occasionally
resulted in follow-up requests per multiple-day-long periods:
6% of batches had an interval length of two days or more
(M = 25.9 hours, SD = 15.23 hours). It should be noted that
though these mechanisms prevented us from realising full po-
tential in annotation volume, they also helped the system to
self-regulate, allowing it to adjust to each participant’s routine.

5.2 Participant Perspective
5.2.1 General study set-up and participant burden

We begin the discussion of interview themes by considering
the general study set-up and participant burden. Most intervie-
wees found the data collection well organised and undemand-
ing, demonstrated also by the high follow-up response rate.
The average time taken to complete a single follow-up was 6.8
minutes, while the median was 2.5. This largely matches par-
ticipants’ perception of commitment required. For example,
one interviewee remarks:

“It only takes like two minutes. Or maybe three minutes.
. . . It’s not a huge commitment. I think the evening time
was perfect because productivity is kind of plummeting
. . . so spending two minutes answering a survey isn’t a
huge deal.” (IP1)22

Participants were also appreciative that no special set-up was
required for individual search routines. Past empirical software
engineering studies have largely focused on Eclipse users

22“IP” refers to Interview Participant. Though all interviewees took
part in the instrumented panel, we use separate notation here, as par-
ticipant anonymity prevented us from knowing which instrumented
panel user a given interviewee represented.
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Figure 5.1. Follow-up survey response times for each of the 14 days in the data collection period (min = 5 minutes 14 seconds, max = 10 days 17 hours,
SD = 28.23 hours).

(e.g, [16, 24, 33]) (presumably because of the ease in which
loggers and plugins can be written for the IDE), and this limits
the variety of behaviours expressed in the sample. The use
of a browser extension can accommodate a range of search
behaviours, as this comment illustrates:

“Because I use DuckDuckGo as my primary search en-
gine it recorded it anyway, it was very easy for me to
follow up.” (IP6)

We believe our aim of capturing real-world context was largely
achieved. Interviewees claimed that they generally forgot
they were being tracked, often citing a state of flow when
programming. For example:

“I think I generally forgot. . . . Especially with program-
ming, you get so in- like, the zone with what you’re
coding that...” (IP7)

This unawareness was usually broken only when they were
prompted for follow-ups, as one interviewee notes here:

“As soon as I installed it, I forgot about it . . . . And then,
I remembered again once I saw the little icon light up
with another follow-up survey. But after I’d done that, I
forgot about it again.” (IP1)

It is therefore unlikely that participants made any significant
changes to their usual search practices during data collection;
the few exceptions are discussed in Section 5.2.5.

5.2.2 Follow-up reminders and response delay
Timely follow-up completion was another important point
of consideration. Section 3.3.2 describes the efforts made
to publish follow-ups promptly to avoid biased retrospection.
The extra delay from publishing to completion was mostly
insignificant: follow-ups were completed within a median of
2.61 hours of receipt, with 32% of responses falling below a 1-
hour delay and 64% falling below a 6-hour delay (Figure 5.1).

12 participants also opted to receive additional survey re-
minders by text message, but most interviewees considered
the plugin notification sufficient, often citing familiar routines
in the use of the widget area:

“I think the notification in the icon alerted me anyway
because I’ve got a couple of things installed there that
alert me so I’m aware of what’s going on in that top right
corner.” (IP3)

“I have a couple of other extensions there and ( ) when
it’s time to do feedback I fill it in... because it’s illumi-
nated.” (IP5)

In contrast, the text messages were not considered useful due
to inconsiderate timing:

“You send me a reminder, and I think about it and I don’t
have the questions for another 12 hours or so.” (IP2)
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“I don’t think I really needed [the texts]... but that’s just
cause I was working [at my computer] the whole time.”
(IP7)

“I never actually looked at the text and then went to do
the follow-up. I always saw the icon change and then did
the follow-up.” (IP6)

Daily routines were also cited as helpful in managing the
surveys, but because of the varying batch intervals discussed
above, this strategy is only effective where schedules are stable,
triggering follow-ups at similar times each day:

“I guess the first thing in the morning I just noticed the
little notification and it just became a part of my things to
do . . . before I actually start work, like checking emails,
checking Slack, things like that.” (IP3)

5.2.3 Recall accuracy
We anticipated a fall in recollection ability with longer follow-
up delays: in the pilot, the participant found it difficult to
remember his motivations for a search made the day before.
But in the main study, participants forgot the context of their
search in only three cases (these searches had occurred 21
hours, 3 days and 4 days prior to being annotated). Most
interviewees claimed memory had rarely been an issue, and
some cited query structure as a helpful hint:

“Generally, the [query] was just what I’d been searching
for so I could just say ‘Looking for...’ whatever the search
was. Mostly, . . . it was self-explanatory.” (IP5)

“There’s this sort of format that you write . . . which prob-
ably helps give a lot of context because you’re normally
like ‘the language’, ( ), ‘the problem’ . . . so you kind
of get this sentence structure in your searches. So I guess
that’s . . . what makes it easy enough to remember.” (IP7)

While most annotations were of high quality and described
context beyond what was visible from the query alone, this
reliance on the query itself to describe search goals was some-
times evident. For example:

[jackson json validation] “how to validate json
using jackson” (DSP14)

This suggests that participants either failed to recall exact
context and resorted to superficial reasoning more often than
consciously acknowledged, or, indeed, that they opted for
brevity due to lack of time or interest:

“Some days I had stuff to do at work and then I had to fill
them in . . . fast. Other days when I was bored at work
and I didn’t have that much . . . to do I tried to write more
proper sentences.” (IP9)

To avoid pitfalls related to recall accuracy, future iterations of
the browser extension could only display survey links for a
predefined period [4].

5.2.4 Understanding follow-up questions
When discussing follow-up questions, interviewees voiced
no issues with comprehension. Deciding on the appropriate

Activity label Used on % of queries

Building 44.54%

Understanding 43.7%

Managing overhead 13.73%

Designing 12.61%

Testing 12.04%

Editing 10.92%

Other 5.6%

Table 5.1. The proportional use of programming activity labels to tag
search queries. Note that the total exceeds 100% because a query could
be tagged with multiple labels.

programming activity labels in Question 2 (see Table 3.2),
however, was challenging to many:

“The difficulty was in putting them into categories. Be-
cause I might be searching for something sort of... tan-
gential to what I was doing. . . . So it was very difficult
to work out what to actually put there. . . . I might have
been testing stuff, but [discovered suddenly that] ‘Oh,
actually I need to fix this’. You start fixing it and you
start Googling, and... Well, I was testing, [but] I’m still
now, you know.” (IP1)

“So, for me it fitted into two sort of areas, because all the
work I’ve been doing for the past couple of weeks has
been similar. . . . When it said ‘Testing’ I... I mean I’m
writing tests all the time. My workflow is testing. So it
wasn’t really relevant.” (IP4)

The difficulty was twofold: participants cited conflicts be-
tween the activity label and their mental model of it, as well as
the activity label and what they had actually been doing (e.g.,
when multitasking). As seen in Table 5.1, tagging queries
with “Building” and “Understanding” was particularly popu-
lar. Using the same class of activities in a survey, LaToza and
Myers [28] reported a more uniform distribution. This may, of
course, signify that Web search simply occurs more often dur-
ing “Building” and “Understanding”. But given the confusion
expressed among interviewees and examples of obscure use in
annotations (such as “Designing” taken to mean visual design,
rather than its intended sense of architectural planning), one
must also consider the possibility that they were interpreted as
high-level activities that apply to most cases.

For this reason, activity labels alone were rarely taken as a
basis for analysis. They were, however, useful in supplying
additional context when coupled with annotations and the
surrounding browsing sessions. A review of how the activities
are termed would benefit future studies.

Finally, while not directly related to question comprehension,
some minor issues were raised with TypeForm’s survey inter-
face (e.g., hover effects, keyboard navigation). The use of a
third party inevitably reduces researcher control, but we main-
tain that the ease of integration with an established service
outweighs the ability to fine-tune interface elements.
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5.2.5 Privacy and response to being tracked
Privacy concerns were anticipated to be the biggest barrier
to participation. In this regard, the group of programmers
participating may have largely been self-selecting: the two par-
ticipants who withdrew cited unease with tracking, while those
interviewed were generally indifferent. Elaborating on their
approach, they often took the stance that privacy in today’s
online world is largely an “illusion” (IP2):

“I’m very much of the opinion that everything’s tracked
by something somewhere anyway so . . . tracking-wise it
doesn’t particularly bother me.” (IP3)

“I’m not the most concerned person about privacy to be
honest. . . . I can’t kid myself with privacy when I know
I put so much of my information online anyway.” (IP6)

The use of multiple Google Chrome profiles or separate work
computers may also have advocated a relaxed approach to
privacy. In these cases, browsing unrelated to work is hidden
from the plugin. Seven interviewees already had these multi-
profile practices in place prior to the study.

While we anticipated a high demand for the log filtering op-
tions provided (see Section 3.2), little use was reported in
exit interviews: only four individuals specified a logging time-
frame or added URLs to the blacklist. Moreover, they claimed
to do so not because of privacy concerns but simply to re-
duce the volume of irrelevant logs. (An example of a similar
courtesy to the investigator, one participant claimed to make
conscious efforts to search the Web more frequently than usual,
though only for the first few days.) A single interviewee made
use of the batch download option. Still, the availability of
these features was appreciated:

“Well, the blacklisting feature is very very good and I
used it. But I used it mostly to keep the number of logs
down, for example, sites like Reddit and Amazon and
stuff, there’s no value in them being in the logs.” (IP1)

“The only tracking during certain hours and the blacklist-
ing were nice I think. . . . I looked over the defaults you
put in and they all seemed kind of okay. So I didn’t add
anything else to it. But yeah, that was nice to see . . . ”
(IP7)

“It wasn’t about of privacy, it was more that you wouldn’t
have to go through so much data.” (IP9)

On the other hand, this indifference to privacy was not reflected
fully in participants’ response to being tracked, as some cited
increased awareness of their search topics, ranging from casual
musings to feelings of shame:

“I generally tend to search for syntax, so being a devel-
oper for 9–10 years now, it kind of makes me feel dumb
that I’m actually searching for really basic stuff.” (IP2)

“Sometimes—because it’s my first year programming—
I would ask what I think are quite stupid questions
((laughs)). So I was wondering ‘oh dear, I hope I don’t
have to follow up on this question’ ((laughs)).” (IP6)

Some past research has indeed made the assumption that expert
programmers make fewer reminder searches (e.g., [6]). In our
dataset, however, programmers of all experience levels were
likely to search for syntax reminders.

It should also be noted that negative feelings were conjured
less by the tracking itself and more by having to follow up on
certain searches:

“The questionnaire is what gets me the most because
whenever I answer the question, I’m like ‘I can’t believe
I was that dumb to actually not know the answer to that’.”
(IP2)

‘The fact of searching for it is fine, it’s when you have to
explain... ((laughs)) why you were searching it.” (IP6)

Though these musings remained mostly passive, in the case of
one participant, some syntax searches were made in Incognito
mode specifically to conceal them from the logger. As the
participant later elaborated, this only occurred during the start
of the study:

“The hassle of actually [using] Incognito to do my shame-
ful searches for syntax kind of disappeared after the first
day or so.” (IP2)

Most interviewees, however, did not did not feel self-conscious
about specific search topics and many cited the experience of
reflecting on one’s work as enjoyable:

“I actually quite liked it because getting the follow-ups
every day meant that I have to reflect back on the day
and think about what was I doing, which was quite nice.”
(IP1)

“I found it funny looking back at what I’d searched for
the previous day, just quite entertaining.” (IP3)

“Every single one was kind of interesting because it was
like, ‘oh, this day I worked on stuff that was Ruby, this
day I worked on stuff that was PHP, this day it’s MySQL,
this day it’s Mongo’. It was kind of interesting to see how
the focus of my work changes depending on the day. It
wasn’t something I’d realised before.” (IP8)

An emotional engagement with the follow-up surveys was
also sometimes evident in the annotations: some reiterate
their discoveries at length (an opportunistic learning strategy?)
while others express frustration:

[hook-cron] “I have somewhat of an idea of how
cron.php works in a Drupal server, but the documen-
tation online for Drupal 6 is non-existent. In fact, I get
an un-styled html page that says ‘File not found’ when I
click on the docs... useless.” (DSP4)

A full account of exit interview codes and themes is given in
Appendix I.

5.3 Investigator Perspective
To evaluate our method from the perspective of the investi-
gator, we now turn to factors of a more operational nature:
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investigator burden and the utility of annotations. We also
discuss some alternative IP-ES applications, showing that the
approach is not constrained to studying search behaviour.

5.3.1 Investigator burden and study scale
During data collection, the investigator’s main function was to
flag queries for follow-up. Facilitated by the random sampling
system built into the admin interface, surveys were mostly
published within minutes. More demanding, however, was
managing the high frequency of incoming batches. With an
average of 10 batches shared per day across different time-
zones, notification emails and mobile availability of the admin
interface were instrumental.

Though only three queries were flagged at a time, all logs
were eventually classified as “programming query” or “other
browsing”. This was less time-sensitive as overall propor-
tions played only a minor role in our analyses (they were
more helpful in assessing methodological potential). Still, the
tailor-made system allowed us to design an efficient workflow:
whereas during the pilot logs had been classified one by one
from a single pool, we later implemented per-batch classifi-
cations where just the programming queries were explicitly
classified and everything else was “other” by default.

Similarly, a custom-built interface eased the burden of ver-
ifying query refinements. Here, the admin panel displayed
all queries in a session one by one (automatically extracted
based on the 5-minute interval rule; see Section 3.4), and the
investigator indicated the correct number of refinements with
a keystroke. As most sessions contained a single query, the
process took less than an hour to complete.

In larger-scale studies, query flagging and log classification
could be handled with further automation or more human re-
source. Card sorting, however, would be problematic: with
several hundred searches, it was both operationally and cog-
nitively demanding. In these cases, conducting multiple card
sorts with subsets of the data has been shown to be feasi-
ble [30].

5.3.2 The utility of annotations
As illustrated by many of the example searches given in Chap-
ter 4, the main conclusion we draw from analysing annotations
is that queries alone can be deceptive when inferring search
goals. They may indeed reliably predict intent in non-specialist
searches as previously suggested [37]. But in the case of pro-
gramming, similar query structure is used with a range of
search motivations; that is to say, similar query structure is not
reserved for obviously similar search classes like how-to and
documentation searches. Consider, for example, the following
generic query: [javascript infinity]. It could suggest a
low-level syntax search for the infinity symbol in JavaScript,
but also a high-level learning goal, as was the case here:

[javascript infinity] “Learning what infinity is
used for.” (DSP9)

Similarly, queries that contain high-level concepts and thus
indicate a learning goal could actually seek help with syntax:

[react component lifecycle] “I wanted to find the
docs relating to the react component lifecycle as I forgot
componentDidMount().” (DSP8)

Furthermore, 19 annotations were coded with an explicit
search for an example, whereas only five of them included the
word “example” in the query.

Numerous annotations referenced coworkers and the social
context of programming, creating another surprising category
of deceptive searches. Here, the annotation illustrates cooper-
ation:

GitHub: [remote disconnected] “Someone on my
team thought they found a bug in probably the most
popular nodejs mongo drivers. I didn’t find anything that
indicated such. . . . ” (DSP4)

Another example of social context, resources were sometimes
sought not for learning, but teaching:

[easing functions examples] “To showcase to my
fellow developer what easing functions are and to show
visual examples.” (DSP10)

We therefore believe the use of annotations leads to more
accurate search goals compared to studies where no first-hand
commentary is given. For example, misleading queries may
partly account for why the high-level use case of research and
investigation has rarely been captured in log analyses in the
past (e.g. [16, 20]). The analysis of Stack Overflow questions
[44] was the only study reviewed that reported information
goals at a similarly high level—and in this case, plenty of
context was available (forum posts must include thorough
background to attract good answers).

On the other hand, even with annotations, search goals were
not always clear. The follow-up question (What triggered
this search?) was deliberately open-ended so as to prompt
serendipitous comments, but this may also have attracted some
low-quality annotations. Others provided detail that was irrel-
evant to the motivation of the search, as seen here:

[mongouri config] “What I was really searching for
here was ‘connection string’, but it wasn’t coming to my
head, so I floundered for a good while before I figured
out what I really needed.” (DSP4)

In these cases, interpreting search goals relied somewhat on
personal judgement, but more heavily on supporting data such
as the programming activity labels the query was tagged with,
or browsing logs in the surrounding session. It therefore seems
unlikely that the rare ambiguous annotations would signifi-
cantly affect our analysis.

A factor that could have a significant impact on analysis, how-
ever, is investigator judgement when deciding which queries
to flag in the first place: if logs are falsely classified as pro-
gramming searches, the annotation is rendered unusable. The
classification issue has been previously addressed by using
only an obvious subset of the query log, e.g., searches con-
taining the word “java” [20]; as shown, this would exclude a
sizeable number of non-obvious programming queries. In this
study, we took measures against false classifications by taking
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note of the technologies used by each participant (reported in
the enrolment survey). Still, at least seven queries were falsely
classified as related to programming. The number of false
negatives is potentially higher as non-programming-related
logs were never annotated and thus never audited.

5.3.3 Alternative applications
The current study focused on what programmers search for on-
line, but annotations often also referred to programmers’ work
practices and the cultural and social contexts they operate in,
possibly making the method a useful addition in ethnographic
studies, if appropriately adapted. The frequent references to
coworkers discussed in the previous section provide one ex-
ample; as another, here, a participant describes their strategy
for programming in an unfamiliar language:

“I’m programming something in golang, but I don’t have
enough familiarity with the language to achieve my goal
with any amount of speed, so I’m implementing an al-
gorithm in python before I attempt to port it over to the
golang code.” (DSP4)

And here, we get a cultural glimpse into a development team’s
communications:

[git --force] “Making a nerdy star wars + git joke
on slack.” 23 (DSP7)

Abundant data can also be drawn from the full log corpus,
confirming the utility of browsing logs that retain user and
session information [17, 46]. Yielding among other things
session lengths, site visits during a search session and search
parameters24, a variety of usage patterns can be examined
beyond what the current paper has discussed.

5.3.4 Participant communications
As a final point of discussion in our methodological review,
we stop briefly on an unexpected managerial issue: the lack
of personalised communications with participants. The inves-
tigator had, de jure, no ways of associating a log trail with a
known individual, so personal feedback or checking in with
participants who fell behind on surveys was challenging. We
continue to value participant anonymity from the investigator,
but the loss of these ad hoc communications may impact data
quality. The browser extension could certainly be equipped
with, say, an anonymous, per-participant messaging system.
Given the indifference to privacy expressed by interviewees, it
is uncertain whether this effort would be worthwhile.

6. CONCLUSION
In this report, we have presented our findings on what program-
mers in the wild search for on the Web, and what strategies
they employ during the process. We have also presented a
novel data collection method, dubbed IP-ES, that draws on
techniques from query log analysis, diary studies and experi-
ence sampling, demonstrating its use with a Chrome extension.

23[git --force] in this context also provides an example of a
falsely classified programming query.

24Query parameters in Google URLs, for instance, distinguish typed
searches from Google Instant searches.

We conclude with a discussion of three insights into program-
mers’ Web search practices that have wider implications for
design, and how the IP-ES method can be helpful in uncover-
ing similar findings in the future.

Web search is leveraged during a range of programming
activities. Past studies have focused on Web use during ac-
tivities that involve actual coding, resulting in categorisations
that revolve primarily around documentation and reminder
searches. While developers arguably spend the majority of
their time on lower-level programming activities, our findings
illustrate that Web search is equally leveraged during higher-
level activities such as planning a feature or investigating
potential technologies.

Participants’ commentary revealed that reading code authored
by other people also occurs as a prevalent work activity, and
one where Web search plays a role. Often representing a
barrier to information as per Ko, Myers and Aung’s terminol-
ogy [25], confusions that arise during code reviews or when
dealing with legacy code are typically resolved by simply
examining code or consulting team members. Our findings
demonstrate that online documentation lookups are similarly
helpful. In these cases, programmers will construct their query
from found code snippets or specific API names.

Reminder searches occur frequently despite ample oppor-
tunity to avoid them. Syntax lookups are arguably among
the easiest to automate as the information sought is atomic.
The need for basic reminders is already addressed by several
tools described in the literature [5, 20, 32, 43], and by simple
IDE features such as auto-completion. Yet, few participants
reported using such tooling, and nearly a fifth of the searches
in our dataset fell under syntax reminders. We believe there
is ample opportunity to provide syntax reminders with IDE
enhancements, prompting the question: Are there no adequate
tools available? Or has accessing Web resources become so
convenient that any alternatives would fail to provide consid-
erable benefits? If so, perhaps future design efforts should be
focused not on isolated IDE enhancements, but on improving
the algorithms and heuristics of general Web search engines.

Social validation is valued in questions of coding. The need
for social validation may be more important in questions of
coding than previously thought. Intuitively, the search for
opinion is more common during high-level planning activi-
ties, but our findings show that social proof is also sought
when facing lower-level coding issues, such as API use. This
has implications for the design of search tools that filter and
re-format search results such that only interface names and
code snippets remain (e.g., [20, 43]; while effective for syntax
lookups, presenting information in this way makes it harder to
gauge best practices.

We would also like to present three key learning points from a
methodological perspective.

Query logs alone are insufficient for analysing user goals.
Instrumented panels can be seen as a compromise between the
rich, contextual data of an observational study and the high-
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volume yield of an aggregate log analysis [17]. By asking
programmers to annotate their logs, however, we have shown
that contextual information increases not only the richness
of data, but—crucially—validity, too. Programming queries
lacking commentary can be misleading, and though broad-
brush heuristics (such as the use of programming terms in a
query) can be applied to query logs consisting of millions of
items, researchers should not rely on them for smaller datasets
where critical nuances can be missed.

Programmers are comfortable engaging with a browser
plugin. With instrumented panel participants facing long-
term demands to provide timely information, it is beneficial
for the medium to integrate conveniently into the user’s work
environment. We have demonstrated a browser extension to
be suitable for these purposes, as programmers are familiar
with the paradigm and thus feel comfortable engaging with the
study. Though some participants were self-conscious about
their searches and privacy concerns should certainly not be
understated, we believe using a familiar medium can at least
alleviate them.

A browser plugin is also intimately tied to Web use. A less
discreet piece of software that has to be separately installed
may disturb existing workflows and carries the risk of neglect.
It would also fail to accommodate any existing strategies peo-
ple use for separating work and personal browsing, such as
the use of multiple browser profiles.

Finally, although many participants are excluded if the plugin
is made available on a single browser, Google Chrome’s popu-
larity makes it a low-risk choice in 2017: 80% of respondents
to our recruitment survey were Chrome users.

Anonymity from the researchers is valued by participants,
but may not improve participation rates. Assuming that
programmers can be persuaded to take part in the study by
alleviating concerns over privacy and anonymity led us to ex-
pend significant technical efforts on added features. However,
we found from interviewing participants that attitudes towards
privacy are largely established (even if they are relaxed), and
a self-selection bias apparent among our participants suggests
that any efforts to sway these attitudes with added anonymity
may have trivial gains.

As the software industry faces increasingly sophisticated re-
quirements and opportunistic practices continue seeping into
programmers’ workflows, it is clear that the Web will carry
on as an indispensable resource for software engineers. Our
premise has been that helping them navigate this network of
information, formulate the right questions and home in on the
relevant presents a high-impact opportunity of improving soft-
ware quality as well as work satisfaction. This is an ambitious
project, but one that relies fundamentally on an understanding
of how programmers today leverage the Web. In this report,
we have highlighted search behaviours that can help mould
tool design around existing mental models, and presented one
potential approach to the continued study of programmers’

Web use in the wild. We await excitedly for future findings
and industry-tested design directions.
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A. PARTICIPANT RECRUITMENT SURVEY
169 responses in total.

I would like to invite you to participate in a study explor-
ing the online search patterns of software engineers. The
study involves anonymously tracking the programming-related
searches you make online over a period of two weeks. As a
thank you for your time, you will be entered into a prize draw
to receive one of two £50 Amazon vouchers.

The study is part of my Master’s research project at UCL. If
you choose to take part, your data will be treated anonymously
and used only for the purpose of this project. No personal
details that could be used to identify you will be associated
with the data.

Please take 1–2 minutes to respond to a few questions to
determine whether you’re eligible to participate. Responding
to this survey does not enrol you in the study—if you are
eligible, I will provide a detailed information sheet for your
consideration.

1. Are you actively involved in software development at
this time?*
To answer “Yes”, you should spend a significant amount
of your day programming (during most days of the week).
This could include any kind of programming—for work,
for a side project, as part of a course etc.
• Yes 144 / 85%

• No 25 / 15%

2. Do you use Google Chrome as your primary Web
browser?*
• Yes 115 / 80% of 144

• No 29 / 20% of 144

3. What is your age?* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. What is your name?* . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. What is your email address?* . . . . . . . . . . . . . . . . . . . . .

Thank you for your interest in this study!

You will shortly be sent an invitation to participate.
If you have any questions or concerns, contact me at
elise.hein.14@ucl.ac.uk.

B. ENROLMENT SURVEY
This is a one-off questionnaire about how you work as a pro-
grammer. Please try to complete this questionnaire as soon as
possible—preferably on the first day of your participation in
the study. It consists mainly of multiple choice questions, and
should take you about 10–15 minutes to complete.

You are invited to respond because you agreed to take part in
a study exploring developers’ online search habits. If you
have any questions or concerns, contact the researcher at
elise.hein.14@ucl.ac.uk

Please answer the following questions about yourself.

1. What is your gender?*
• Male 14 / 78%

• Female 4 / 22%

• Other

2. What is your age?* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. What is your nationality?* . . . . . . . . . . . . . . . . . . . . . . . .
4. What is your country of residence?* . . . . . . . . . . . . . . .

Please answer the following questions about your pro-
gramming experience.

1. How many years of formal training in computer sci-
ence or a related field do you have?*
• I am fully self-taught 6 / 33%

• Less than a year 2 / 11%

• 1–2 years 1 / 6%

• 3–5 years 3 / 17%

• More than 5 years 6 / 33%

2. Outside of formal training, in what other roles have
you used programming?*
A professional programmer refers to someone who is
employed (or self-employed) to produce software.
A professional non-programmer refers to someone who
is not employed to produce software, but occasionally
does so as part of their job (e.g., data scientist, academic
researcher).
A hobbyist refers to someone with no professional pro-
gramming experience.
Choose as many as you’d like.

• As a professional programmer 17 / 94%

• As a professional non-programmer 4 / 22%

• As a hobbyist 12 / 67%

• Other

3. How many years of experience do you have as
a [professional programmer | professional non-
programmer | hobbyist programmer]?*
• Less than 1

professional programmer 2 / 12% of 17
professional non-programmer 0 of 4
hobbyist programmer 1 / 8% of 12

• 1–2
professional programmer 0 of 17
professional non-programmer 0 of 4
hobbyist programmer 1 / 8% of 12

• 3–5
professional programmer 6 / 35% of 17
professional non-programmer 1 / 25% of 4
hobbyist programmer 4 / 33% of 12

• 6–10
professional programmer 7 / 41% of 17
professional non-programmer 1 / 25% of 4
hobbyist programmer 1 / 8% of 12

• 11–20
professional programmer 1 / 6% of 17
professional non-programmer 2 / 50% of 4
hobbyist programmer 2 / 17% of 12
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• More than 20
professional programmer 1 / 6% of 17
professional non-programmer 0 of 4
hobbyist programmer 3 / 25% of 12

4. Briefly list the main programming technologies you
are familiar with.*
These can include languages, frameworks, platforms as
well as development tools. Please don’t list technolo-
gies that you’ve used in the past but do not remember in
sufficient detail to make use of at the present time.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. If there are any other comments you would like to
make about your programming experience, please
add them here.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Please answer the following questions about your current
primary programming project.

Information about your the project you’ll be working on dur-
ing the study will be helpful in analysing your search data.
If you’re working on multiple projects simultaneously (e.g.,
work during the day, side-project in the evenings), make your
answers about the one that you think you spend more time on.

Note: Please also make sure that if you’ve configured a time-
frame in the browser extension for this study, it aligns with
when you work on your primary project. For example, don’t
set the plugin to collect data from 10am to 6pm if you work
on your primary project in the evenings. You can specify a
timeframe from the “Options & info” page (link in plugin
popup footer).

1. My current primary programming project is . . . .*
• A not-for profit project of my own initiative 1 / 6%

• A for-profit project of my own initiative 1 / 6%

• A project I’m employed on as a professional 15 / 83%

• Other 1 / 6%

2. How many programmers, including yourself, are
working together on the project?*
Please consider only the people who actively contribute
to same codebase as you.

• I am the only person working on the codebase 5 / 28%

• 2–4 7 / 39%

• 5–10 3 / 17%

• 11–20 2 / 11%

• More than 20 1 / 6%

3. Briefly list the technologies you are working with on
this project.*
These can include languages, frameworks, platforms as
well as development tools. Please only list the technolo-
gies you personally make use of.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Which code editor(s) or IDE(s) do you use when
working with these technologies?*
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. How would you rate your overall familiarity with the
technologies you work with on this project?*
Please try to assess average or overall familiarity with the
parts of the technology stack that you personally need
to work with. For example, if you feel very comfortable
with Ruby on Rails, and not at all comfortable with CSS,
but must often work with both, the self-assessment
should fall somewhere in the middle.

• 1 (I am not at all familiar with the technologies I
work with on this project)
• 2
• 3
• 4 2 / 11%

• 5 6 / 33%

• 6 3 / 17%

• 7 (I am comfortably familiar with the technologies I
work with on this project) 7 / 39%

Average: 5.83

6. How would you rate your overall familiarity with the
codebase(s) you contribute to on this project?*
In this question we are not so much interested in tech-
nical expertise, but rather the implicit knowledge about
the codebase(s) as a whole: where to add code for new
features, which parts need refactoring, what the legacy
concerns are, why certain design decisions have been
made, etc.

• 1 (I am not at all familiar with the codebase(s) on
this project)
• 2 1 / 6%

• 3
• 4 5 / 28%

• 5 5 / 28%

• 6 1 / 6%

• 7 (I am intimately familiar with the codebase(s) on
this project) 6 / 33%

Average: 5.28

7. If there are any other comments you would like to
make about your current project, please add them
here.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Please answer the following questions about how you use
the Web when programming.

1. Which general search engine do you use for program-
ming queries?*
“General” here refers to search engines designed for use
by the general public. The next question will be about
search engines designed specifically for programming
queries.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Please list any search engines or other software de-
signed specifically for programming queries that you
make frequent use of.
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Examples of such search engines include symbol-
hound.com or haskell.org/hoogle; examples of software
include Dash for offline documentation access. Please
only include services where you make explicit use of a
search function. For example, only mention Stack Over-
flow or GitHub if using their search function is a common
strategy for you when looking for programming informa-
tion.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. If you do make use of any alternative search engines,
briefly describe your reasons for preferring them
over a general one.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Do you use any plugins or enhancements in your IDE
or code editor that provide means of searching the
Web or documentation? If so, please describe briefly
how they work.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Please describe briefly your usual workflow or set-up
for switching between writing code and searching the
Web.*
For example, do you use any keyboard shortcuts for
quickly accessing a search engine, or do you keep a dedi-
cated monitor or workspace for the browser only?

6. Do you use any languages other than English
when searching for programming information on the
Web?*
• Yes 2 / 11%

• No 16 / 89%

7. Please elaborate on your use of languages other than
English when searching the Web for programming
information.
What are your reasons for choosing one language over
the other?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. If there are any other comments you would like to
make about your search strategies when looking for
programming information on the Web, please add
them here.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thank you for your time!

If you have any questions or concerns, please contact
elise.hein.14@ucl.ac.uk.

C. FOLLOW-UP SURVEY EXAMPLE
This is a quick follow-up survey about three programming-
related searches that you made during the 24 hours up to
14:30, Oct 17th. We’re interested in understanding the higher-
level context around these searches; we’re less interested in
technical detail.

If you have any questions or concerns, contact the researcher
at elise.hein.14@ucl.ac.uk.

On this day, why did you search for. . . ?

For each query, please describe, if you can recall, what the
trigger was for the search—what problem were you trying to
solve? It may be helpful to think of the search engine as a
human being. What would your question (or command) have
been?

If the query given is not related to programming, please skip
the question.

Example of a useful answer rails migration string array—I
wanted to add a string array to one of my database columns,
but I didn’t know whether this was possible with rails migra-
tions, or what the syntax is.

1. ruby encode url params
This search is from 10:56, Oct 17th.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. activerecord map
This search is from 14:38, Oct 17th.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. ruby unix timestamp to date
This search is from 15:31, Oct 17th.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On this day, what were you doing when you searched
for. . . ?

We would also like to know about the high-level programming
activities you were engaged in when you made each of the
three searches. You can choose from the following activities
(you’ll be able to return to this list for reference).

Designing You were analysing a new problem and mapping
out the broad flow of code for solving it (e.g., exploratory
research for a new feature, API design).

Building You were producing code for new program be-
haviour (e.g., adding a new feature) and getting it into a
compatible state.

Editing You were editing existing code and returning it to a
compatible state (e.g., fixing bugs, refactoring, or rearchi-
tecting).

Understanding You were determining information about
code such as the inputs and outputs to methods, what
the call stack looks like, why the code is doing what it
is doing, or the rationale behind a design decision (e.g.,
investigating a bug, reviewing pull requests).

Testing You were creating or running tests, or otherwise en-
suring that code is behaving as expected (using a system-
atic approach outside of your main edit-debug cycle).

Managing overhead You were engaged in activities related
to the development environment, such as setting up repos-
itories, build or deployment scripts, or managing depen-
dencies.

1. ruby encode url params
This search is from 10:56, Oct 17th.
Choose as many as you’d like

• Designing
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• Building
• Editing
• Understanding
• Testing
• Managing overhead
• Other

2. activerecord map
This search is from 14:38, Oct 17th.
Choose as many as you’d like

• Designing
• Building
• Editing
• Understanding
• Testing
• Managing overhead
• Other

3. ruby unix timestamp to date
This search is from 15:31, Oct 17th.
Choose as many as you’d like

• Designing
• Building
• Editing
• Understanding
• Testing
• Managing overhead
• Other

Thank you for your time!

If you have any questions or concerns, please contact
elise.hein.14@ucl.ac.uk.

D. EXIT INTERVIEW PROTOCOL

D.1 Introduction
First of all, I’d like to thank you again for sharing your insights
in the study, and thank you for agreeing to this interview.
While the insights you’ve already shared will help to inform
the design of better support tools for software engineers, your
impressions, frustrations and concerns about how the study
was carried out will be valuable in improving this type of data
collection method in the future. I thought we might begin with
any general impressions you had about the experience. How
did you find the two-week data collection period?

D.2 Questions about Follow-up Surveys
Let’s now look at how you found filling in the follow-up
surveys on a daily basis.

1. What do you think about the level of commitment re-
quired to keep up with the surveys? Was it manageable
for you?
Prompts if required: frustrations with timing; genuine
forgetfulness; time it took to respond; whether a routine
emerged

2. You were one of the participants who chose (not) to have
daily reminders to respond to the follow-up questions.
Do you think this had an impact on when or whether you
filled them in?
Prompts if required: use of the plugin badge; desensitisa-
tion to reminders; annoyance with reminders

3. Could you please describe the experience of filling in a
given follow-up survey.
Prompts if required: difficulties recalling the context of
a search; difficulties in deciding depth of annotation;
difficulties understanding answer choices; searches that
were not related to programming

D.3 Questions about Privacy
I’d like to now ask you some questions about privacy issues
during the course of the study.

1. Could you please describe how you felt about your pri-
vacy during the study?
Prompts if required: awareness of Incognito mode

2. Do you think you were aware of enough details about
how data was shared in order to make you feel more at
ease about taking part in the study?

3. Did you ever forget that your browsing history was being
shared? How did this make you feel?
Prompts if required: regrets about certain browsing ac-
tivities; frustrations with batches that had already been
shared

4. Because of technical constraints, it was difficult for us to
track only programming-related browsing. We therefore
had to collect all browsing activities. How did you feel
about this? Would you say you were ever concerned
about any of the programming-related browsing that was
shared, or was it only the personal browsing that made
you concerned, if at all?

5. Did you ever make use of Incognito mode during the
study because you wanted to make sure it was not shared
for the research?

6. Did you make use of the two configuration options in the
plugin—the timeframe and the blacklist? Why/why not?
Prompts if required: perceived usefulness; understanding
of how configuration options worked; discoverability

7. Did you ever download a batch of logs from the plugin
to review what had been shared? Why/why not?

D.4 Questions about Search Behaviour
One of the challenges of observing any kind of behaviour in
people is that the behaviour observed will sometimes change
simply because of the act of observation. In a study like
this, we therefore need to find a balance between staying
conspicuously in the background, but also making sure you
are aware of being watched. I’d like to ask you a few final
questions about whether you feel taking part in the study
changed your search behaviour in any way at all.

1. During the course of the study, did you ever feel like you
altered your search behaviour because you knew your
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browsing was being shared—e.g., out of concerns for
privacy, or to avoid getting too many follow-up surveys?

2. During the course of the study, did you ever feel like you
were more mindful or conscious about your Web search
strategies? Do you think this had any effect on how you
searched for programming information?

E. PARTICIPANT CORRESPONDENCE

Subject: GDD: Invitation to take part in a study exploring developers' online search behaviour


Hello … ,


Thank you for your interest in this study!


In the study, we will track participants' programming-related online searches for two weeks using a Chrome 
extension. I am sending over an information sheet with the full study details for your consideration; please read this 
carefully. By taking part, you will help us make a small contribution to the design and development of better search 
tools for programmers! You will also be entered into a prize draw to win one of two £50 Amazon vouchers.


If you would like to participate, respond to this email with the following:


• The date when you would like to begin the study – any day from now up to the 11th of November would be 
preferred 


• Optionally, your telephone number for receiving automated follow-up survey reminder text messages

• A signed copy of the consent form (can be digitally signed)


On the first day of the study, I will send you an email with the Chrome browser extension and setup instructions 
(installing and configuring the plugin should not take more than a few minutes). At the end of the study I will send you 
an invitation to take part in an optional exit interview – this is entirely voluntary. The exit interview will be about your 
participation experience, and will help us to evaluate the design of the plugin and surveys and address any privacy 
concerns.


I would appreciate if you dropped me a message even if you decide not to take part. If you have any questions, 
please let me know.


Best wishes,


Elise Hein


Attachments: Information sheet.pdf, Consent form.pdf  

Figure E.1. The invitation to participate in the study that was sent to those who indicated their eligibility in the recruitment survey (169 people). The
email included copies of the information sheet and informed consent form.
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Subject: GDD: First day of participation in study


Hello … , 


Your participation in the two-week study on programmers' online search patterns begins today.


To begin, please install this Chrome extension: 


https://chrome.google.com/webstore/detail/google-driven-development/jjpphncbiijckbkpeohmgflobjalohhb


If the installation is successful, the "Options & info" page for the extension will open automatically. On this page, you 
can configure the extension to only share data from a specific timeframe, or to completely ignore certain URLs or 
domains. If you'd like to take advantage of the blacklisting option, I'd recommend taking a quick glance at your 
browser history during the past few days so that you can identify websites you visit often that are irrelevant to your 
work as a programmer.


When you click on the extension icon (on the right of the address bar), you will see a link to a one-off survey about 
your generic development practices. Please try to respond to this at your earliest convenience.


As you have provided me with your mobile number, you’ll receive daily automated follow-up reminders at 5pm. 
Please let me know if this is not a suitable time, or if you would like to not receive these reminders.


The plugin will automatically stop collecting data after two weeks. I'll contact you again at this time with a reminder 
to uninstall the extension. Meanwhile, if you have any questions or concerns, don't hesitate to get in touch.


Best wishes,


Elise Hein 

Figure E.2. The welcome briefing sent to participants on the day they wished to begin the study, outlining how to install and configure the browser
extension.
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Subject: GDD: You’re now half way through the study


Hello, 


You're now half way through the data collection period in the study on developers' online search habits. This is just a 
short message to check in – let me know if anything is unclear about what is collected, or about the follow-up survey 
questions that you've been filling in.


I'd kindly ask you to fill in follow-up surveys sooner rather than later, as it becomes harder to recall the context of 
your searches otherwise. If you haven't yet, please also make sure that you've filled in the generic one-off survey 
about how you work as a developer – the link to this is also in the plugin popup window.


Many thanks for your continued participation.


Best wishes,


Elise Hein 

Figure E.3. A check-in message sent to participants midway through the study, notifying them of their progress and reminding them of the surveys
that they should fill in.
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Subject: GDD: Thank you for sharing your insights!


Hello ... , 


Thank you so much for sharing your insights over the past two weeks in our study on how programmers search for 
information online! 


Today is the last day of your two-week data collection period. The browser extension will automatically stop sharing 
logs, but you may want to uninstall it nonetheless to de-clutter.


The £50 Amazon voucher winners will be drawn once the two-week data collection period has been completed by all 
who are taking part, at which time I'll send you a separate email letting you know whether you were among the 
winners.


In the meantime, I'd like to invite you to an optional exit interview to learn about your experience in taking part in the 
study (I'll not ask you to elaborate on any of your programming searches, nor reveal your participant ID). While the 
insights you've already shared will help to inform the design of better support tools for software engineers, your 
impressions, frustrations and concerns about how the study was carried out will be valuable in improving this type of 
data collection method in the future.


Please let me know if you would be able to take part so that we can arrange a suitable time and place to meet – the 
interview should take around 15-30 minutes. If you are not in London, we can also chat via Skype or Google 
Hangouts. Note that you will still be entered into the voucher prize draw whether or not you take part in the interview.


Thank you again for your time and commitment.


Best wishes,


Elise Hein

Figure E.4. The exit briefing sent to participants on the final day of their data collection period, thanking them for their insights and inviting them to
an optional exit interview.
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F. INFORMATION SHEET

Information Sheet for Participants in Research Studies 
You will be given a copy of this information sheet.


 
Title of project	 	 Exploring developers’ online search behaviour in the wild 

This study has been approved by the UCL Research Ethics Committee with Project ID Number:

UCLIC/1617/001/MSc Marquart/Hein 

Investigators 
Elise Hein	 	 	 Nicolai Marquardt

elise.hein.14@ucl.ac.uk	 	 n.marquardt@ucl.ac.uk

+44 (0) 758 0426 583	 	 +44 (0) 20 3108 7065 (x57065)


UCL Interaction Centre

2nd floor 66-72 Gower Street

London, WC1E 6BT


We would like to invite you to participate in this research study conducted by Elise Hein and Nicolai 
Marquardt at UCL. You should only participate if you want to; choosing not to take part will not 
disadvantage you in any way. Before you decide whether you want to take part, it is important for you to 
read the following information carefully and discuss it with others if you wish. Ask us if there is anything 
that is not clear or if you would like more information. 


One of the challenges programmers face both professionally as well as in their personal projects is being 
able to find and consolidate relevant information from online sources: tutorials, API documentation, 
syntax specifications, Q&A websites etc. Though tooling is being constantly developed to bridge the gap 
between the IDE and the Web browser or to otherwise augment the search experience, few tools have 
been adopted in industry. In the empirical software engineering community, it is thought that one of the 
reasons for this may be that design is not rooted in the real work practices of professional software 
engineers. As such, the purpose of this research project is to gain insight into how real programmers go 
about searching the Web during their day-to-day programming activities.


UCL DIVISION OF PSYCHOLOGY  
AND LANGUAGE SCIENCES

37



In this study, you will be asked to install a browser extension on the computer where you do most of your 
programming work. The browser extension will automatically collect your browsing data over two weeks 
and anonymously send it to the research database over a secure connection. Information that could be 
used to identify you will not be included in the shared data; therefore, the investigators will not be able to 
associate browsing logs with any one participant. You will also be able to configure the browser 
extension not to share certain browsing history.


Over the course of the two weeks, the browser extension will also prompt you to respond to 
questionnaires. The extension will flag one questionnaire at the beginning of the study about your 
general programming practices, and several short ad-hoc surveys about some of the programming 
searches that you make during the course of the study (chosen randomly). By describing the context 
around a given search query, you will help us to understand the search strategies people adopt when 
faced with different programming challenges.


In total, you should expect to spend about 10-15 minutes setting up the study and responding to the 
one-off questionnaire, and an average of about 5 minutes per day on subsequent days responding to 
any surveys that are flagged.


As a final part of the study, you may opt into an exit interview after the two-week data collection period 
to share with us your experience in taking part in a study of this format. If you opt into the interview, you 
will not be asked about your search history; rather, it will help us to evaluate the design of the study – the 
browser extension, the surveys, and how to alleviate any privacy concerns.


At the end of the study, all participants will be entered into a prize draw to win one of two £50 Amazon 
vouchers. A copy of the finished report for this research will also be made available upon request.


All data will be handled according to the Data Protection Act 1998 and will be kept anonymous. Only the 
investigators on this project will analyze these data. It is up to you to decide whether or not to take part. 
If you decide to take part you will be given this information sheet to keep and be asked to sign a consent 
form. If you decide to take part you are still free to withdraw at any time and without giving a reason.
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G. INFORMED CONSENT FORM

Informed Consent Form for Participants in Research Studies 
 
Title of project	 	 Exploring developers’ online search behaviour in the wild 

This study has been approved by the UCL Research Ethics Committee with Project ID Number:


UCLIC/1617/001/MSc Marquart/Hein 

Participant’s Statement 

I ……………………………………………………………………………


agree that I have

• read the information sheet and/or the project has been explained to me orally;


• had the opportunity to ask questions and discuss the study; and


• received satisfactory answers to all my questions or have been advised of an individual to contact 
for answers to pertinent questions about the research and my rights as a participant and whom to 
contact in the event of a research-related injury.


• I understand that my browsing history will be partially tracked for two weeks and I am aware of and 

consent to the analysis of the event logs.


• I understand that my responses in any interviews will be taped and I am aware of and consent to 

the analysis of the recordings.

• I understand that I must not take part if I am not physically or mentally able to be interviewed.


I understand that I am free to withdraw from the study without penalty if I so wish, and I consent to the 
processing of my personal information for the purposes of this study only and that it will not be used for 

any other purpose. I understand that such information will be treated as strictly confidential and handled 

in accordance with the provisions of the Data Protection Act 1998. 

Signed:		 	 	 	 	 Date:


Investigator’s statement 

I, Elise Hein, confirm that I have carefully explained the purpose of the study to the participant and 

outlined any reasonably foreseeable risks or benefits.


Signed: 	 	 	 	 	 Date:

UCL DIVISION OF PSYCHOLOGY  
AND LANGUAGE SCIENCES
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H. BROWSER PLUGIN WELCOME PAGE
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Figure H.1. The welcome page displayed to participants when they installed the browser extension. Note: Figure spans two pages.
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I. EXIT INTERVIEW THEMES

FOLLOW-UPS USE OF PLUGIN OPTIONS OTHER
Remembering to fill in Filling in Seeing 

own 
queriesDifficulty No difficulty Recalling 

context
Understanding 

q’s

IP1

IP2

IP3

IP4

IP5

IP6

IP7

IP8

IP9

STUDY SET-UP ATTITUDES TOWARDS PRIVACY BEING TRACKED

Concerned Unconcerned Awareness of 
tracking

Response to tracking

More Less Negative Neutral

IP1

IP2

IP3

IP4

IP5

IP6

IP7

IP8

IP9

Ef
fic

ie
nc

y

SM
S 

us
el

es
s

Ty
pe

fo
rm

 U
I l

ac
ki

ng

En
jo

ya
bl

e 
ex

pe
rie

nc
e

Ho
w

 a
re

 q
ue

rie
s 

fla
gg

ed

Su
rv

ey
 fa

tig
ue

 to
w

ar
ds

 th
e 

en
d

Ha
rd

 to
 k

ee
p 

up
 in

iti
al

ly

Pr
iv

ac
y 

is
 o

nl
y 

a 
co

nc
er

n 
in

iti
al

ly

M
or

e 
da

ta
 c

ol
le

ct
io

n 
tra

ns
pa

re
nc

y 
ne

ed
ed

Us
ed

 In
co

gn
ito

 1
–2

 ti
m

es
  f

or
 p

ro
gr

. s
ea

rc
he

s

Us
ed

 In
co

gn
ito

 1
–2

 ti
m

es
 fo

r p
riv

at
e 

br
ow

si
ng

Sh
ar

in
g 

da
ta

 w
ith

 a
n 

in
di

vi
du

al
 is

 s
ca

ry

M
ak

e 
pl

ug
in

 s
ou

rc
e 

co
de

 a
va

ila
bl

e

Le
gi

tim
ac

y 
of

 s
tu

dy
 is

 a
 fa

ct
or

No
 u

se
 o

f I
nc

og
ni

to
 m

od
e

Pr
iv

ac
y 

ge
ne

ra
lly

 n
ot

 a
n 

is
su

e

Ex
is

tin
g 

st
ra

te
gi

es
 to

 m
an

ag
e 

pr
iv

ac
y

Us
e 

of
 m

ul
tip

le
 C

hr
om

e 
pr

ofi
le

s

“N
ot

hi
ng

 is
 p

riv
at

e 
th

es
e 

da
ys

 a
ny

w
ay

”

Su
ffi

ci
en

t i
nf

or
m

at
io

n 
gi

ve
n 

ab
ou

t s
tu

dy

M
os

tly
 w

or
k-

re
la

te
d 

br
ow

si
ng

Al
w

ay
s 

aw
ar

e 
of

 tr
ac

ki
ng

M
us

in
gs

 a
bo

ut
 u

pc
om

in
g 

su
rv

ey

Te
nd

en
cy

 to
 fo

rg
et

 p
lu

gi
n

Su
rv

ey
 a

s 
a 

re
m

in
de

r o
f p

ar
tic

ip
at

io
n

St
at

e 
of

 fl
ow

 w
he

n 
co

di
ng

Aw
ar

en
es

s 
of

 s
ea

rc
h 

to
pi

cs

Fe
el

in
g 

ju
dg

ed

Ch
an

ge
 o

f W
eb

 u
se

 to
 h

av
e 

le
ss

 fo
llo

w
-u

ps

No
 c

ha
ng

e 
in

 a
w

ar
en

es
s 

of
 s

ea
rc

h 
to

pi
cs

No
 s

ha
m

e

In
cr

ea
se

d 
aw

ar
en

es
s 

of
 s

ea
rc

h 
be

ha
vi

ou
r

Co
ns

ci
ou

s 
ch

an
ge

 o
f W

eb
 u

se
 (n

eu
tra

l)

Ha
rd

 to
 s

ee
 n

ot
ifi

ca
tio

n 
in

 b
ro

w
se

r U
I

Un
su

ita
bl

e 
tim

in
g

Ic
on

 n
ot

ifi
ca

tio
n 

an
no

yi
ng

Br
ut

e 
fo

rc
e 

m
em

or
is

in
g

Ea
sy

 to
 s

ee
 ic

on
 in

 b
ro

w
se

r U
I

Su
ita

bl
e 

tim
in

g

Ic
on

 n
ot

ifi
ca

tio
n 

us
ef

ul

Re
m

em
be

re
d 

qu
er

y 
co

nt
ex

t

Lo
ng

er
 s

ea
rc

he
s 

se
lf-

ex
pl

an
at

or
y

Fo
rg

ot
 c

on
te

xt
 if

 to
o 

la
te

Un
de

rs
to

od
 q

ue
st

io
ns

Ca
te

go
ry

–a
ct

iv
ity

 c
on

fli
ct

Ca
te

go
ry

–m
en

ta
l m

od
el

 c
on

fli
ct

Fo
rg

ot
 c

at
eg

or
y 

de
fin

iti
on

s

Ra
is

ed
 a

w
ar

en
es

s 
of

 s
ea

rc
h 

st
ra

te
gi

es

Em
ot

io
na

l r
es

po
ns

e

Us
e 

of
 b

at
ch

 d
ow

nl
oa

d

Us
e 

of
 ti

m
ef

ra
m

e

Us
e 

of
 b

la
ck

lis
tin

g

Fi
lte

rin
g 

to
 k

ee
p 

lo
gs

 d
ow

n

No
 u

se
 o

f b
at

ch
 d

ow
nl

oa
d

No
 u

se
 o

f t
im

ef
ra

m
e

No
 u

se
 o

f b
la

ck
lis

tin
g

Ap
pr

ec
ia

tiv
e 

of
 o

pt
io

ns

Ha
pp

y 
w

ith
 b

la
ck

lis
t d

ef
au

lts

�6

Figure I.1. Occurrences of codes and themes in interview transcripts. Codes are grouped into themes along the top and middle areas of the table; black
squares in the matrices mark occurrences of codes in a given interviewee’s transcript.



J. BATCHES PER PARTICIPANT

Total batches Batches with published survey Ratio of surveys to batches

P3 9 9 100%

P6 13 12 92%

P14 10 8 80%

P4 13 10 77%

P10 10 7 70%

P17 10 7 70%

P2 15 10 67%

P12 12 8 67%

P1 12 8 67%

P15 6 4 67%

P9 13 7 54%

P18 10 5 50%

P11 13 6 46%

P16 9 4 44%

P5 11 4 36%

P8 11 4 36%

P7 10 3 30%

P13 14 3 21%

Total 201 119

Average 11.2 6.61 59.69%

Table J.1. The number of batches shared by each participant, and the number of batches with a published follow-up survey. Recall that a follow-up
was only published if there were at least three occurrences of programming searches from separate search sessions in the batch.
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